Abstract
Phosphate-dependent glutaminase was present at approximately similar activities in lymph nodes from mammals other than rat, and in thymus, spleen, Peyer's patches and bone marrow of the rat. This suggests that glutamine is important in all lymphoid tissues. Phosphate-dependent glutaminase activity was shown to be present primarily in the mitochondria of rat mesenteric lymph nodes, and most of the activity could be released by detergents. The properties of the enzyme in mitochondrial extracts were investigated. The pH optimum was 8.6 and the Km for glutamine was 2.0 mM. The enzyme was activated by phosphate, other phosphorylated compounds including phosphoenolpyruvate, and also leucine: 50% activation occurred at 5, 0.2 and 0.6 mM for phosphate, phosphoenolpyruvate and leucine respectively. The enzyme was inhibited by glutamate, 2-oxoglutarate, citrate and ammonia, and by N-ethylmaleimide and diazo-5-oxo-L-norleucine; 50% inhibition was observed at 0.7 and 0.1 mM for glutamate and 2-oxoglutarate respectively. Some of these properties may be important in the control of the enzyme activity in vivo.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alp P. R., Newsholme E. A., Zammit V. A. Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J. 1976 Mar 15;154(3):689–700. doi: 10.1042/bj1540689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ardawi M. S., Newsholme E. A. Glutamine metabolism in lymphocytes of the rat. Biochem J. 1983 Jun 15;212(3):835–842. doi: 10.1042/bj2120835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ardawi M. S., Newsholme E. A. Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilization pathways in lymphocytes of the rat. Biochem J. 1982 Dec 15;208(3):743–748. doi: 10.1042/bj2080743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baverel G., Lund P. A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochem J. 1979 Dec 15;184(3):599–606. doi: 10.1042/bj1840599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Budohoski L., Challis R. A., Newsholme E. A. Effects of starvation on the maximal activities of some glycolytic and citric acid-cycle enzymes and glutaminase in mucosa of the small intestine of the rat. Biochem J. 1982 Jul 15;206(1):169–172. doi: 10.1042/bj2060169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiu J. F., Boeker E. A. Cow brain glutaminase: partial purification and mechanism of action. Arch Biochem Biophys. 1979 Sep;196(2):493–500. doi: 10.1016/0003-9861(79)90301-1. [DOI] [PubMed] [Google Scholar]
- Cooney G. J., Taegtmeyer H., Newsholme E. A. Tricarboxylic acid cycle flux and enzyme activities in the isolated working rat heart. Biochem J. 1981 Dec 15;200(3):701–703. doi: 10.1042/bj2000701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crompton M., McGivan J. D., Chappell J. B. The intramitochondrial location of the glutaminase isoenzymes of pig kidney. Biochem J. 1973 Jan;132(1):27–34. doi: 10.1042/bj1320027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curthoys N. P., Lowry O. H. The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J Biol Chem. 1973 Jan 10;248(1):162–168. [PubMed] [Google Scholar]
- Curthoys N. P., Shapiro R. A. Mechanism of glutamate and alpha-ketoglutarate inhibition of rat renal phosphate-dependent glutaminase. Contrib Nephrol. 1982;31:71–76. doi: 10.1159/000406618. [DOI] [PubMed] [Google Scholar]
- Curthoys N. P., Weiss R. F. Regulation of renal ammoniagenesis. Subcellular localization of rat kidney glutaminase isoenzymes. J Biol Chem. 1974 May 25;249(10):3261–3266. [PubMed] [Google Scholar]
- Goldstein L., Boylan J. M. Renal mitochondrial glutamine transport and metabolism: studies with a rapid-mixing, rapid-filtration technique. Am J Physiol. 1978 Jun;234(6):F514–F521. doi: 10.1152/ajprenal.1978.234.6.F514. [DOI] [PubMed] [Google Scholar]
- Goldstein L. Pathways of glutamine deamination and their control in the rat kidney. Am J Physiol. 1967 Oct;213(4):983–989. doi: 10.1152/ajplegacy.1967.213.4.983. [DOI] [PubMed] [Google Scholar]
- Goldstein L. Relation of glutamate to ammonia production in the rat kidney. Am J Physiol. 1966 Mar;210(3):661–666. doi: 10.1152/ajplegacy.1966.210.3.661. [DOI] [PubMed] [Google Scholar]
- Goldstein L. alpha-Ketoglutarate regulation of glutamine transport and deamidation by renal mitochondria. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1136–1141. doi: 10.1016/0006-291x(76)91021-4. [DOI] [PubMed] [Google Scholar]
- Hartman S. C. Glutaminase of Escherichia coli. I. Purification and general catalytic properties. J Biol Chem. 1968 Mar 10;243(5):853–863. [PubMed] [Google Scholar]
- Holcenberg J. S., Ericsson L., Roberts J. Amino acid sequence of the diazooxonorleucine binding site of Acinetobacter and Pseudomonas 7A glutaminase--asparaginase enzymes. Biochemistry. 1978 Feb 7;17(3):411–417. doi: 10.1021/bi00596a005. [DOI] [PubMed] [Google Scholar]
- Huang Y. Z., Knox W. E. A comparative study of glytaminase isozymes in rat tissues. Enzyme. 1976;21(5):408–426. doi: 10.1159/000458890. [DOI] [PubMed] [Google Scholar]
- Joseph S. K., Meijer A. J. The inhibitory effects of sulphydryl reagents on the transport and hydrolysis of glutamine in rat-liver mitochondria. Eur J Biochem. 1981 Oct;119(3):523–529. doi: 10.1111/j.1432-1033.1981.tb05639.x. [DOI] [PubMed] [Google Scholar]
- Kalra J., Brosnan J. T. Localization of glutaminase in rat liver. FEBS Lett. 1973 Dec 1;37(2):325–328. doi: 10.1016/0014-5793(73)80488-0. [DOI] [PubMed] [Google Scholar]
- Kalra J., Brosnan J. T. The subcellular localization of glutaminase isoenzymes in rat kidney cortex. J Biol Chem. 1974 May 25;249(10):3255–3260. [PubMed] [Google Scholar]
- Katunuma N., Huzino A., Tomino I. Organ specific control of glutamine metabolism. Adv Enzyme Regul. 1967;5:55–69. doi: 10.1016/0065-2571(67)90008-8. [DOI] [PubMed] [Google Scholar]
- Kovacevic Z., McGivan J. D. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev. 1983 Apr;63(2):547–605. doi: 10.1152/physrev.1983.63.2.547. [DOI] [PubMed] [Google Scholar]
- Kovacevic Z. Properties and intracellular localization of Ehrlich ascites tumor cell glutaminase. Cancer Res. 1974 Dec;34(12):3403–3407. [PubMed] [Google Scholar]
- Krebs H. A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J. 1935 Aug;29(8):1951–1969. doi: 10.1042/bj0291951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kvamme E., Olsen B. E. Evidence for two species of mammalian phosphate-activated glutaminase having different regulatory properties. FEBS Lett. 1979 Nov 1;107(1):33–36. doi: 10.1016/0014-5793(79)80456-1. [DOI] [PubMed] [Google Scholar]
- Kvamme E., Tveit B., Svenneby G. Glutaminase from pig renal cortex. I. Purification and general properties. J Biol Chem. 1970 Apr 25;245(8):1871–1877. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lund P. Glutamine metabolism in the rat. FEBS Lett. 1980 Aug 25;117 (Suppl):K86–K92. doi: 10.1016/0014-5793(80)80573-4. [DOI] [PubMed] [Google Scholar]
- Newsholme E. A., Crabtree B. Theoretical principles in the approaches to control of metabolic pathways and their application to glycolysis in muscle. J Mol Cell Cardiol. 1979 Sep;11(9):839–856. doi: 10.1016/0022-2828(79)90480-2. [DOI] [PubMed] [Google Scholar]
- Pinkus L. M., Windmueller H. G. Phosphate-dependent glutaminase of small intestine: localization and role in intestinal glutamine metabolism. Arch Biochem Biophys. 1977 Aug;182(2):506–517. doi: 10.1016/0003-9861(77)90531-8. [DOI] [PubMed] [Google Scholar]
- Ray T. K. A modified method for the isolation of the plasma membrane from rat liver. Biochim Biophys Acta. 1970 Jan 6;196(1):1–9. doi: 10.1016/0005-2736(70)90159-8. [DOI] [PubMed] [Google Scholar]
- Regulation of renal ammoniagenesis. Purification and characterization of phosphate-dependent glutaminase from rat kidney. Arch Biochem Biophys. 1976 May;174(1):82–89. [PubMed] [Google Scholar]
- SAYRE F. W., ROBERTS E. Preparation and some properties of a phosphateactivated glutaminase from kidneys. J Biol Chem. 1958 Nov;233(5):1128–1134. [PubMed] [Google Scholar]
- Schröck H., Cha C. J., Goldstein L. Glutamine release from hindlimb and uptake by kidney in the acutely acidotic rat. Biochem J. 1980 May 15;188(2):557–560. doi: 10.1042/bj1880557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shapiro R. A., Clark V. M., Curthoys N. P. Inactivation of rat renal phosphate-dependent glutaminase with 6-diazo-5-oxo-L-norleucine. Evidence for interaction at the glutamine binding site. J Biol Chem. 1979 Apr 25;254(8):2835–2838. [PubMed] [Google Scholar]
- Shapiro R. A., Morehouse R. F., Curthoys N. P. Inhibition by glutamate of phosphate-dependent glutaminase of rat kidney. Biochem J. 1982 Dec 1;207(3):561–566. doi: 10.1042/bj2070561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strzelecki T., Schoolwerth A. C. Alpha-ketoglutarate modulation of glutamine metabolism by rat renal mitochondria. Biochem Biophys Res Commun. 1981 Sep 30;102(2):588–593. doi: 10.1016/s0006-291x(81)80172-6. [DOI] [PubMed] [Google Scholar]
- Svenneby G. Time and temperature dependent activation of pig brain glutaminase. J Neurochem. 1972 Jan;19(1):165–174. doi: 10.1111/j.1471-4159.1972.tb01266.x. [DOI] [PubMed] [Google Scholar]
- Svenneby G., Tveit B., Kvamme E. Glutaminase from pig renal cortex. II. Activation by inorganic and organic anions. J Biol Chem. 1970 Apr 25;245(8):1878–1882. [PubMed] [Google Scholar]
- Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Windmueller H. G. Glutamine utilization by the small intestine. Adv Enzymol Relat Areas Mol Biol. 1982;53:201–237. doi: 10.1002/9780470122983.ch6. [DOI] [PubMed] [Google Scholar]
- Zammit V. A., Newsholme E. A. The maximum activities of hexokinase, phosphorylase, phosphofructokinase, glycerol phosphate dehydrogenases, lactate dehydrogenase, octopine dehydrogenase, phosphoenolpyruvate carboxykinase, nucleoside diphosphatekinase, glutamate-oxaloacetate transaminase and arginine kinase in relation to carbohydrate utilization in muscles from marine invertebrates. Biochem J. 1976 Dec 15;160(3):447–462. doi: 10.1042/bj1600447. [DOI] [PMC free article] [PubMed] [Google Scholar]