Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1980 Aug;143(2):989–994. doi: 10.1128/jb.143.2.989-994.1980

Morphological effect of cerulenin treatment on Streptococcus faecalis as studied by ultrastructure reconstruction.

M L Higgins, D D Carson, L Daneo-Moore
PMCID: PMC294404  PMID: 6782085

Abstract

Exponential-phase cells of Streptococcus faecalis ATCC 9790 were treated with a concentration of cerulenin (5 micrograms/ml) that has been shown to block both lipoteichoic acid and lipid synthesis and cell division within 10 min. The morphological effect of this treatment was studied by making three-dimensional reconstructions of cells based on measurements taken from axial thin sections. This analysis indicated that cerulenin interferes with cell division by inhibiting normal constriction of the division furrow and centripetal growth of the cross wall in envelope growth sites. Rather than dividing, many of the sites in treated cells apparently continue to elongate and produce abnormally large amounts of peripheral wall surface. These observations were interpreted in terms of a previously proposed model in which cerulenin would prevent the synthesis of a lipid-containing inhibitor of autolytic enzyme activity needed for division. In addition, measurements showed that the average number of envelope growth sites per cell increased during treatment, suggesting that although cerulenin treatment blocks division, it does not interfere with the formation of new envelope growth sites. It was also observed that the size and frequency of mesosomes did not decline during the 60-min period of drug treatment. This tends to decrease the likelihood that mesosomes are formed from a pool of intracellular membrane precursors that would be depleted during a period of restricted lipid biosynthesis.

Full text

PDF
989

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carson D., Daneo-Moore L. Effect of cerulenin on Streptococcus faecalis macromolecular synthesis and cell division. J Bacteriol. 1978 Feb;133(2):472–476. doi: 10.1128/jb.133.2.472-476.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cleveland R. F., Daneo-Moore L., Wicken A. J., Shockman G. D. Effect of lipoteichoic acid and lipids on lysis of intact cells of Streptococcus faecalis. J Bacteriol. 1976 Sep;127(3):1582–1584. doi: 10.1128/jb.127.3.1582-1584.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cleveland R. F., Wicken A. J., Daneo-Moore L., Shockman G. D. Inhibition of wall autolysis in Streptococcus faecalis by lipoteichoic acid and lipids. J Bacteriol. 1976 Apr;126(1):192–197. doi: 10.1128/jb.126.1.192-197.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Higgins M. L., Daneo-Moore L., Boothby D., Shockman G. D. Effect of inhibition of deoxyribonucleic acid and protein synthesis on the direction of cell wall growth in Streptococcus faecalis. J Bacteriol. 1974 May;118(2):681–692. doi: 10.1128/jb.118.2.681-692.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Higgins M. L., Daneo-Moore L. Effect of macromolecular synthesis and lytic capacity on surface growth of Streptococcus faecalis. J Bacteriol. 1980 Feb;141(2):938–945. doi: 10.1128/jb.141.2.938-945.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Higgins M. L., Pooley H. M., Shockman G. D. Reinitiation of cell wall growth after threonine starvation of Streptococcus faecalis. J Bacteriol. 1971 Mar;105(3):1175–1183. doi: 10.1128/jb.105.3.1175-1183.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Higgins M. L., Shockman G. D. Model for cell wall growth of Streptococcus faecalis. J Bacteriol. 1970 Feb;101(2):643–648. doi: 10.1128/jb.101.2.643-648.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Higgins M. L., Shockman G. D. Procaryotic cell division with respect to wall and membranes. CRC Crit Rev Microbiol. 1971 May;1(1):29–72. doi: 10.3109/10408417109104477. [DOI] [PubMed] [Google Scholar]
  9. Higgins M. L., Shockman G. D. Study of cycle of cell wall assembly in Streptococcus faecalis by three-dimensional reconstructions of thin sections of cells. J Bacteriol. 1976 Sep;127(3):1346–1358. doi: 10.1128/jb.127.3.1346-1358.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Higgins M. L. Three-dimensional reconstruction of whole cells of Streptococcus faecalis from thin sections of cells. J Bacteriol. 1976 Sep;127(3):1337–1345. doi: 10.1128/jb.127.3.1337-1345.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Higgins M. L., Tsien H. C., Daneo-Moore L. Organization of mesosomes in fixed and unfixed cells. J Bacteriol. 1976 Sep;127(3):1519–1523. doi: 10.1128/jb.127.3.1519-1523.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hinks R. P., Daneo-Moore L., Shockman G. D. Cellular autolytic activity in synchronized populations of Streptococcus faecium. J Bacteriol. 1978 Feb;133(2):822–829. doi: 10.1128/jb.133.2.822-829.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hinks R. P., Daneo-Moore L., Shockman G. D. Relationship between cellular autolytic activity, peptidoglycan synthesis, septation, and the cell cycle in synchronized populations of Streptococcus faecium. J Bacteriol. 1978 Jun;134(3):1074–1080. doi: 10.1128/jb.134.3.1074-1080.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shockman G. D., Daneo-Moore L., Higgins M. L. Problems of cell wall and membrane growth, enlargement, and division. Ann N Y Acad Sci. 1974 May 10;235(0):161–197. doi: 10.1111/j.1749-6632.1974.tb43265.x. [DOI] [PubMed] [Google Scholar]
  15. Vanderwinkel E., De Vlieghere M., Feller A. Murein hydrolase activity and septum deficiency in Escherichia coli genetically constitutive for the beta-oxidation pathway [proceedings]. Biochem Soc Trans. 1977;5(4):1043–1045. doi: 10.1042/bst0051043. [DOI] [PubMed] [Google Scholar]
  16. Vanderwinkel E., De Vlieghere M., Fontaine M., Charles D., Denamur F., Vandevoorde D., De Kegel D. Septation deficiency and phosphilipid perturbation in Escherichia coli genetically constitutive for the beta oxidation pathway. J Bacteriol. 1976 Sep;127(3):1389–1399. doi: 10.1128/jb.127.3.1389-1399.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES