Abstract
This paper extends previous work (Gandevia & McCloskey, 1976) on proprioception in the terminal joint of the middle finger. By positioning the finger in appropriate ways proprioceptive acuity at the joint can be assessed when no muscular afferents could contribute, or when afferents in the flexor but not the extensor could contribute, or when afferents from both muscles could contribute. Digital nerve block anaesthetizes joint and cutaneous receptors and so was used to study the contributions from muscle afferents in isolation. Displacements (10 degrees) at various angular velocities were better detected when muscle afferents from both flexor and extensor muscles could contribute. This was so whether joint and cutaneous receptors were also available, or after digital anaesthesia. Performance when only muscle afferents are available is, however, inferior to that when all sensory mechanisms are intact. It is concluded that muscle afferents contribute to kinaesthesia, and that a full complement of such receptors from agonist and antagonist muscles gives superior acuity to that achieved when only the receptors of one of the muscle groups is available. The angular displacements necessary for 70% correct detection were determined at angular velocities between 0.25 degrees and 160 degrees/s. Proprioceptive performance was optimal with all proprioceptive mechanisms intact over the range of angular velocities 10 degrees -80 degrees/s: 70% correct detection of displacements of 0.8 degrees-1.2 degrees occurred in this range. Performance deteriorated slightly at higher velocities of displacement. Performance was significantly poorer when only joint and cutaneous receptors could contribute (in the absence of intramuscular receptors), and when only intramuscular receptors could contribute (in the absence of joint and cutaneous receptors). Full proprioceptive acuity depends upon the availability of receptors in muscles and in skin and/or joints.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ferrell W. R. The adequacy of stretch receptors in the cat knee joint for signalling joint angle throughout a full range of movement. J Physiol. 1980 Feb;299:85–99. doi: 10.1113/jphysiol.1980.sp013112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandevia S. C., McCloskey D. I. Joint sense, muscle sense, and their combination as position sense, measured at the distal interphalangeal joint of the middle finger. J Physiol. 1976 Sep;260(2):387–407. doi: 10.1113/jphysiol.1976.sp011521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandevia S. C., McCloskey D. I., Potter E. K. Alterations in perceived heaviness during digital anaesthesia. J Physiol. 1980 Sep;306:365–375. doi: 10.1113/jphysiol.1980.sp013402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodwin G. M., McCloskey D. I., Matthews P. B. The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain. 1972;95(4):705–748. doi: 10.1093/brain/95.4.705. [DOI] [PubMed] [Google Scholar]
- Grigg P., Greenspan B. J. Response of primate joint afferent neurons to mechanical stimulation of knee joint. J Neurophysiol. 1977 Jan;40(1):1–8. doi: 10.1152/jn.1977.40.1.1. [DOI] [PubMed] [Google Scholar]
- Grigg P. Response of joint afferent neurons in cat medial articular nerve to active and passive movements of the knee. Brain Res. 1976 Dec 24;118(3):482–485. doi: 10.1016/0006-8993(76)90317-6. [DOI] [PubMed] [Google Scholar]
- McCloskey D. I. Kinesthetic sensibility. Physiol Rev. 1978 Oct;58(4):763–820. doi: 10.1152/physrev.1978.58.4.763. [DOI] [PubMed] [Google Scholar]
- Millar J. Convergence of joint, cutaneous and muscle afferents onto cuneate neurones in the cat. Brain Res. 1979 Oct 19;175(2):347–350. doi: 10.1016/0006-8993(79)91014-x. [DOI] [PubMed] [Google Scholar]
- SKOGLUND S. Anatomical and physiological studies of knee joint innervation in the cat. Acta Physiol Scand Suppl. 1956;36(124):1–101. [PubMed] [Google Scholar]
