Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Feb;335:51–64. doi: 10.1113/jphysiol.1983.sp014518

Bicarbonate effects, electromotive forces and potassium effluxes in rabbit and guinea-pig gall-bladder.

D Cremaschi, G Meyer, C Rossetti
PMCID: PMC1197337  PMID: 6875892

Abstract

The stimulating effect of external HCO3- on Na+ salt transport has been examined in rabbit and guinea-pig gall-bladder by electrophysiological methods, as a sequel to a previous study carried out by radiochemical techniques. At steady state, cell K+ activity was found to be significantly reduced in the presence of HCO3-, whereas cell Na+ activity significantly increased; in parallel the apical membrane p.d. was depolarized; K+ equilibrium potential was higher than membrane p.d. in every case. The apical p.d. dependence on K+ was unaffected by HCO3-, but in the guinea-pig it was affected by Cl-. Rapid increases in HCO3- concentration on the luminal side caused a depolarization of the apical p.d. of the guinea-pig within about 30 sec, an effect that did not occur if the tissue was pre-treated with 10(-4) M-acetazolamide; the epithelial resistance and apical/basolateral resistance ratio were unchanged in all cases. The primary action of HCO3- is confirmed to be on the apical membrane; an HCO3- conductance does not seem to be present at this level, either in the rabbit or guinea-pig, nor does HCO3- affect Na+ influx through the apical conductive pathway, so that all the stimulating effects of the anion are confirmed to be on the neutral transports of Na+ salts; in spite of this, the apical electromotive force is modified due to the changed cell K+ activity. The rapid depolarization caused by the anion in the guinea-pig is in agreement with an HCO3- electrogenic secretion and/or a basolateral conductance for the anion. Polyelectrolyte dissociation from protons increases in the absence of external HCO3-: the negative charges are mainly counterbalanced by bound Na+ in the rabbit and by free K+ in the guinea-pig. K+ leakage from the cell into the lumen is calculated to be minimal in the rabbit and all K+ lost could be reabsorbed through the paracellular pathways; K+ efflux to the subepithelial layer via conductive routes is insufficient to account for the over-all K+ efflux.

Full text

PDF
51

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cremaschi D., Hénin S. Extracellular space determination in gallbladder mucosa. Biochim Biophys Acta. 1975 Dec 5;411(2):291–294. doi: 10.1016/0304-4165(75)90308-6. [DOI] [PubMed] [Google Scholar]
  2. Cremaschi D., Hénin S., Meyer G. Stimulation by HCO3- of Na+ transport in rabbit gallbladder. J Membr Biol. 1979 May 21;47(2):145–170. doi: 10.1007/BF01876114. [DOI] [PubMed] [Google Scholar]
  3. Cremaschi D., Hénin S. Na+ and Cl- transepithelial routes in rabbit gallbladder: tracer analysis of the transports. Pflugers Arch. 1975 Dec 19;361(1):33–41. doi: 10.1007/BF00587337. [DOI] [PubMed] [Google Scholar]
  4. Cremaschi D., Meyer G. Amiloride-sensitive sodium channels in rabbit and guinea-pig gall-bladder. J Physiol. 1982 May;326:21–34. doi: 10.1113/jphysiol.1982.sp014174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Curci S., Frömter F. Micropuncture of lateral intercellular spaces of Necturus gallbladder to determine space fluid K+ concentration. Nature. 1979 Mar 22;278(5702):355–357. doi: 10.1038/278355a0. [DOI] [PubMed] [Google Scholar]
  6. DIETSCHY J. M., MOORE E. W. DIFFUSION POTENTIALS AND POTASSIUM DISTRIBUTION ACROSS THE GALLBLADDER WALL. J Clin Invest. 1964 Aug;43:1551–1560. doi: 10.1172/JCI105032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duffey M. E., Turnheim K., Frizzell R. A., Schultz S. G. Intracellular chloride activities in rabbit gallbladder: direct evidence for the role of the sodium-gradient in energizing "uphill" chloride transport. J Membr Biol. 1978 Sep 19;42(3):229–245. doi: 10.1007/BF01870360. [DOI] [PubMed] [Google Scholar]
  8. Edelman A., Curci S., Samarzija I., Frömter E. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflugers Arch. 1978 Dec 15;378(1):37–45. doi: 10.1007/BF00581956. [DOI] [PubMed] [Google Scholar]
  9. Frizzell R. A., Dugas M. C., Schultz S. G. Sodium chloride transport by rabbit gallbladder. Direct evidence for a coupled NaCl influx process. J Gen Physiol. 1975 Jun;65(6):769–795. doi: 10.1085/jgp.65.6.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Graf J., Giebisch G. Intracellular sodium activity and sodium transport in necturus gallbladder epithelium. J Membr Biol. 1979 Jun 7;47(4):327–355. doi: 10.1007/BF01869743. [DOI] [PubMed] [Google Scholar]
  11. Gunter-Smith P. J., Schultz S. G. Potassium transport and intracellular potassium activities in rabbit gallbladder. J Membr Biol. 1982;65(1-2):41–47. doi: 10.1007/BF01870467. [DOI] [PubMed] [Google Scholar]
  12. HERMAN R. H., WILSON T. H., KAZYAK L. Electrolyte migrations across the wall of the guinea pig gall bladder. J Cell Physiol. 1958 Feb;51(1):133–144. doi: 10.1002/jcp.1030510108. [DOI] [PubMed] [Google Scholar]
  13. Heintze K., Petersen K. U., Olles P., Saverymuttu S. H., Wood J. R. Effects of bicarbonate on fluid and electrolyte transport by the guinea pig gallbladder: a bicarbonate-chloride exchange. J Membr Biol. 1979 Mar 28;45(1-2):43–59. doi: 10.1007/BF01869294. [DOI] [PubMed] [Google Scholar]
  14. Heintze K., Petersen K. U., Wood J. R. Effects of bicarbonate on fluid and electrolyte transport by guinea pig and rabbit gallbladder: stimulation of absorption. J Membr Biol. 1981;62(3):175–181. doi: 10.1007/BF01998163. [DOI] [PubMed] [Google Scholar]
  15. Hénin S., Cremaschi D. Transcellular ion route in rabbit gallbladder. Electric properties of the epithelial cells. Pflugers Arch. 1975;355(2):125–139. doi: 10.1007/BF00581828. [DOI] [PubMed] [Google Scholar]
  16. Kaye G. I., Wheeler H. O., Whitlock R. T., Lane N. Fluid transport in the rabbit gallbladder. A combined physiological and electron microscopic study. J Cell Biol. 1966 Aug;30(2):237–268. doi: 10.1083/jcb.30.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee C. O., Armstrong W. M. Activities of sodium and potassium ions in epithelial cells of small intestine. Science. 1972 Mar 17;175(4027):1261–1264. doi: 10.1126/science.175.4027.1261. [DOI] [PubMed] [Google Scholar]
  18. Maren T. H. Use of inhibitors in physiological studies of carbonic anhydrase. Am J Physiol. 1977 Apr;232(4):F291–F297. doi: 10.1152/ajprenal.1977.232.4.F291. [DOI] [PubMed] [Google Scholar]
  19. Martin D. W., Murphy B. Carbamyl phosphate and glutamine stimulation of the gallbladder salt pump. J Membr Biol. 1974;18(3-4):231–242. doi: 10.1007/BF01870114. [DOI] [PubMed] [Google Scholar]
  20. Martin D. W. The effect of the bicarbonate ion on the gallbladder salt pump. J Membr Biol. 1974;18(3-4):219–230. doi: 10.1007/BF01870113. [DOI] [PubMed] [Google Scholar]
  21. Mills J. W., DiBona D. R. Distribution of Na+ pump sites in the frog gallbladder. Nature. 1978 Jan 19;271(5642):273–275. doi: 10.1038/271273a0. [DOI] [PubMed] [Google Scholar]
  22. Mirkovitch V., Sepúlveda F. V., Menge H., Robinson J. W. Active amino-acid and sugar uptake by gall bladder epithelium in dog, guinea-pig and man. Pflugers Arch. 1975 Apr 2;355(4):319–330. doi: 10.1007/BF00579853. [DOI] [PubMed] [Google Scholar]
  23. Petersen K. U., Wood J. R., Schulze G., Heintze K. Stimulation of gallbladder fluid and electrolyte absorption by butyrate. J Membr Biol. 1981;62(3):183–193. doi: 10.1007/BF01998164. [DOI] [PubMed] [Google Scholar]
  24. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions. J Membr Biol. 1975 Dec 4;25(1-2):115–139. doi: 10.1007/BF01868571. [DOI] [PubMed] [Google Scholar]
  25. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane. J Membr Biol. 1975 Dec 4;25(1-2):141–161. doi: 10.1007/BF01868572. [DOI] [PubMed] [Google Scholar]
  26. Reuss L., Weinman S. A., Grady T. P. Intracellular K+ activity and its relation to basolateral membrane ion transport in Necturus gallbladder epithelium. J Gen Physiol. 1980 Jul;76(1):33–52. doi: 10.1085/jgp.76.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reuss L., Weinman S. A. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J Membr Biol. 1979 Sep 14;49(4):345–362. doi: 10.1007/BF01868991. [DOI] [PubMed] [Google Scholar]
  28. Strickholm A., Wallin B. G. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes. J Gen Physiol. 1967 Aug;50(7):1929–1953. doi: 10.1085/jgp.50.7.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WHEELER H. O. TRANSPORT OF ELECTROLYTES AND WATER ACROSS WALL OF RABBIT GALL BLADDER. Am J Physiol. 1963 Sep;205:427–438. doi: 10.1152/ajplegacy.1963.205.3.427. [DOI] [PubMed] [Google Scholar]
  30. van Os C. H., Slegers J. F. Correlation between (Na + -K + )-activated ATPase activities and the rate of isotonic fluid transport of gallbladder epithelium. Biochim Biophys Acta. 1971 Jul 6;241(1):89–96. doi: 10.1016/0005-2736(71)90306-3. [DOI] [PubMed] [Google Scholar]
  31. van Os C. H., Slegers J. F. The electrical potential profile of gallbladder epithelium. J Membr Biol. 1975 Dec 4;24(3-4):341–363. doi: 10.1007/BF01868631. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES