Abstract
The stimulating effect of external HCO3- on Na+ salt transport has been examined in rabbit and guinea-pig gall-bladder by electrophysiological methods, as a sequel to a previous study carried out by radiochemical techniques. At steady state, cell K+ activity was found to be significantly reduced in the presence of HCO3-, whereas cell Na+ activity significantly increased; in parallel the apical membrane p.d. was depolarized; K+ equilibrium potential was higher than membrane p.d. in every case. The apical p.d. dependence on K+ was unaffected by HCO3-, but in the guinea-pig it was affected by Cl-. Rapid increases in HCO3- concentration on the luminal side caused a depolarization of the apical p.d. of the guinea-pig within about 30 sec, an effect that did not occur if the tissue was pre-treated with 10(-4) M-acetazolamide; the epithelial resistance and apical/basolateral resistance ratio were unchanged in all cases. The primary action of HCO3- is confirmed to be on the apical membrane; an HCO3- conductance does not seem to be present at this level, either in the rabbit or guinea-pig, nor does HCO3- affect Na+ influx through the apical conductive pathway, so that all the stimulating effects of the anion are confirmed to be on the neutral transports of Na+ salts; in spite of this, the apical electromotive force is modified due to the changed cell K+ activity. The rapid depolarization caused by the anion in the guinea-pig is in agreement with an HCO3- electrogenic secretion and/or a basolateral conductance for the anion. Polyelectrolyte dissociation from protons increases in the absence of external HCO3-: the negative charges are mainly counterbalanced by bound Na+ in the rabbit and by free K+ in the guinea-pig. K+ leakage from the cell into the lumen is calculated to be minimal in the rabbit and all K+ lost could be reabsorbed through the paracellular pathways; K+ efflux to the subepithelial layer via conductive routes is insufficient to account for the over-all K+ efflux.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cremaschi D., Hénin S. Extracellular space determination in gallbladder mucosa. Biochim Biophys Acta. 1975 Dec 5;411(2):291–294. doi: 10.1016/0304-4165(75)90308-6. [DOI] [PubMed] [Google Scholar]
- Cremaschi D., Hénin S., Meyer G. Stimulation by HCO3- of Na+ transport in rabbit gallbladder. J Membr Biol. 1979 May 21;47(2):145–170. doi: 10.1007/BF01876114. [DOI] [PubMed] [Google Scholar]
- Cremaschi D., Hénin S. Na+ and Cl- transepithelial routes in rabbit gallbladder: tracer analysis of the transports. Pflugers Arch. 1975 Dec 19;361(1):33–41. doi: 10.1007/BF00587337. [DOI] [PubMed] [Google Scholar]
- Cremaschi D., Meyer G. Amiloride-sensitive sodium channels in rabbit and guinea-pig gall-bladder. J Physiol. 1982 May;326:21–34. doi: 10.1113/jphysiol.1982.sp014174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curci S., Frömter F. Micropuncture of lateral intercellular spaces of Necturus gallbladder to determine space fluid K+ concentration. Nature. 1979 Mar 22;278(5702):355–357. doi: 10.1038/278355a0. [DOI] [PubMed] [Google Scholar]
- DIETSCHY J. M., MOORE E. W. DIFFUSION POTENTIALS AND POTASSIUM DISTRIBUTION ACROSS THE GALLBLADDER WALL. J Clin Invest. 1964 Aug;43:1551–1560. doi: 10.1172/JCI105032. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duffey M. E., Turnheim K., Frizzell R. A., Schultz S. G. Intracellular chloride activities in rabbit gallbladder: direct evidence for the role of the sodium-gradient in energizing "uphill" chloride transport. J Membr Biol. 1978 Sep 19;42(3):229–245. doi: 10.1007/BF01870360. [DOI] [PubMed] [Google Scholar]
- Edelman A., Curci S., Samarzija I., Frömter E. Determination of intracellular K+ activity in rat kidney proximal tubular cells. Pflugers Arch. 1978 Dec 15;378(1):37–45. doi: 10.1007/BF00581956. [DOI] [PubMed] [Google Scholar]
- Frizzell R. A., Dugas M. C., Schultz S. G. Sodium chloride transport by rabbit gallbladder. Direct evidence for a coupled NaCl influx process. J Gen Physiol. 1975 Jun;65(6):769–795. doi: 10.1085/jgp.65.6.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graf J., Giebisch G. Intracellular sodium activity and sodium transport in necturus gallbladder epithelium. J Membr Biol. 1979 Jun 7;47(4):327–355. doi: 10.1007/BF01869743. [DOI] [PubMed] [Google Scholar]
- Gunter-Smith P. J., Schultz S. G. Potassium transport and intracellular potassium activities in rabbit gallbladder. J Membr Biol. 1982;65(1-2):41–47. doi: 10.1007/BF01870467. [DOI] [PubMed] [Google Scholar]
- HERMAN R. H., WILSON T. H., KAZYAK L. Electrolyte migrations across the wall of the guinea pig gall bladder. J Cell Physiol. 1958 Feb;51(1):133–144. doi: 10.1002/jcp.1030510108. [DOI] [PubMed] [Google Scholar]
- Heintze K., Petersen K. U., Olles P., Saverymuttu S. H., Wood J. R. Effects of bicarbonate on fluid and electrolyte transport by the guinea pig gallbladder: a bicarbonate-chloride exchange. J Membr Biol. 1979 Mar 28;45(1-2):43–59. doi: 10.1007/BF01869294. [DOI] [PubMed] [Google Scholar]
- Heintze K., Petersen K. U., Wood J. R. Effects of bicarbonate on fluid and electrolyte transport by guinea pig and rabbit gallbladder: stimulation of absorption. J Membr Biol. 1981;62(3):175–181. doi: 10.1007/BF01998163. [DOI] [PubMed] [Google Scholar]
- Hénin S., Cremaschi D. Transcellular ion route in rabbit gallbladder. Electric properties of the epithelial cells. Pflugers Arch. 1975;355(2):125–139. doi: 10.1007/BF00581828. [DOI] [PubMed] [Google Scholar]
- Kaye G. I., Wheeler H. O., Whitlock R. T., Lane N. Fluid transport in the rabbit gallbladder. A combined physiological and electron microscopic study. J Cell Biol. 1966 Aug;30(2):237–268. doi: 10.1083/jcb.30.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C. O., Armstrong W. M. Activities of sodium and potassium ions in epithelial cells of small intestine. Science. 1972 Mar 17;175(4027):1261–1264. doi: 10.1126/science.175.4027.1261. [DOI] [PubMed] [Google Scholar]
- Maren T. H. Use of inhibitors in physiological studies of carbonic anhydrase. Am J Physiol. 1977 Apr;232(4):F291–F297. doi: 10.1152/ajprenal.1977.232.4.F291. [DOI] [PubMed] [Google Scholar]
- Martin D. W., Murphy B. Carbamyl phosphate and glutamine stimulation of the gallbladder salt pump. J Membr Biol. 1974;18(3-4):231–242. doi: 10.1007/BF01870114. [DOI] [PubMed] [Google Scholar]
- Martin D. W. The effect of the bicarbonate ion on the gallbladder salt pump. J Membr Biol. 1974;18(3-4):219–230. doi: 10.1007/BF01870113. [DOI] [PubMed] [Google Scholar]
- Mills J. W., DiBona D. R. Distribution of Na+ pump sites in the frog gallbladder. Nature. 1978 Jan 19;271(5642):273–275. doi: 10.1038/271273a0. [DOI] [PubMed] [Google Scholar]
- Mirkovitch V., Sepúlveda F. V., Menge H., Robinson J. W. Active amino-acid and sugar uptake by gall bladder epithelium in dog, guinea-pig and man. Pflugers Arch. 1975 Apr 2;355(4):319–330. doi: 10.1007/BF00579853. [DOI] [PubMed] [Google Scholar]
- Petersen K. U., Wood J. R., Schulze G., Heintze K. Stimulation of gallbladder fluid and electrolyte absorption by butyrate. J Membr Biol. 1981;62(3):183–193. doi: 10.1007/BF01998164. [DOI] [PubMed] [Google Scholar]
- Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions. J Membr Biol. 1975 Dec 4;25(1-2):115–139. doi: 10.1007/BF01868571. [DOI] [PubMed] [Google Scholar]
- Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane. J Membr Biol. 1975 Dec 4;25(1-2):141–161. doi: 10.1007/BF01868572. [DOI] [PubMed] [Google Scholar]
- Reuss L., Weinman S. A., Grady T. P. Intracellular K+ activity and its relation to basolateral membrane ion transport in Necturus gallbladder epithelium. J Gen Physiol. 1980 Jul;76(1):33–52. doi: 10.1085/jgp.76.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuss L., Weinman S. A. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium. J Membr Biol. 1979 Sep 14;49(4):345–362. doi: 10.1007/BF01868991. [DOI] [PubMed] [Google Scholar]
- Strickholm A., Wallin B. G. Relative ion permeabilities in the crayfish giant axon determined from rapid external ion changes. J Gen Physiol. 1967 Aug;50(7):1929–1953. doi: 10.1085/jgp.50.7.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WHEELER H. O. TRANSPORT OF ELECTROLYTES AND WATER ACROSS WALL OF RABBIT GALL BLADDER. Am J Physiol. 1963 Sep;205:427–438. doi: 10.1152/ajplegacy.1963.205.3.427. [DOI] [PubMed] [Google Scholar]
- van Os C. H., Slegers J. F. Correlation between (Na + -K + )-activated ATPase activities and the rate of isotonic fluid transport of gallbladder epithelium. Biochim Biophys Acta. 1971 Jul 6;241(1):89–96. doi: 10.1016/0005-2736(71)90306-3. [DOI] [PubMed] [Google Scholar]
- van Os C. H., Slegers J. F. The electrical potential profile of gallbladder epithelium. J Membr Biol. 1975 Dec 4;24(3-4):341–363. doi: 10.1007/BF01868631. [DOI] [PubMed] [Google Scholar]