Skip to main content
Genetics logoLink to Genetics
. 1980 Sep;96(1):25–41. doi: 10.1093/genetics/96.1.25

High Negative Interference and Recombination in Bacteriophage T5

Barbara North Beck 1
PMCID: PMC1214293  PMID: 6937420

Abstract

The process of close recombinant formation in bacteriophage T5 crosses has been studied by examining the structure of internal heterozygotes (HETs), the immediate products of recombination events. The T5 system was chosen because it permits the study of internal heterozygotes exclusively, thus avoiding the ambiguities inherent in previous studies with T4. The heterozygotes were obtained by the nonselective screening of progeny phage in a prematurely lysed sample from an eight-factor cross. The molecular structure of each HET was inferred from the strand genotypes displayed among its progeny. This investigation presents unequivocal evidence that both overlap and insertion HETs are intermediates in recombinant formation and that insertion HETs are a significant source of close double recombinants. There is evidence suggesting that mismatch repair of overlap HETs could be the source of close triple exchanges. Thus, a significant part, and perhaps all, of the high negative interference for close-marker recombination observed in this system is a direct consequence of the fine structure of the recombinational intermediates. These findings are compatible with recombination models proposed by others, in which a single branched intermediate can give rise to HETs of both the overlap and insertion types.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger H. Genetic analysis of T4D phage heterozygotes produced in the presence of 5-fluorodeoxyuridine. Genetics. 1965 Oct;52(4):729–746. doi: 10.1093/genetics/52.4.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Broker T. R., Lehman I. R. Branched DNA molecules: intermediates in T4 recombination. J Mol Biol. 1971 Aug 28;60(1):131–149. doi: 10.1016/0022-2836(71)90453-0. [DOI] [PubMed] [Google Scholar]
  3. Doermann A. H., Parma D. H. Recombination in bacteriophage T4. J Cell Physiol. 1967 Oct;70(2 Suppl):147–164. doi: 10.1002/jcp.1040700411. [DOI] [PubMed] [Google Scholar]
  4. EDGAR R. S., STEINBERG C. M. On the origin of high negative interference over short segments of the genetic structure of bacteriophage T4. Virology. 1958 Aug;6(1):115–128. doi: 10.1016/0042-6822(58)90063-1. [DOI] [PubMed] [Google Scholar]
  5. Fischhoff D., MacNeil D., Kleckner N. Terminal redundancy heterozygotes involving the first-step-transfer region of the bacteriophage T5 chromosome. Genetics. 1976 Feb;82(2):145–159. doi: 10.1093/genetics/82.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lanni F., Lanni Y. T. Genetic suppressors of bacteriophage t5 amber mutants. J Bacteriol. 1966 Aug;92(2):521–523. doi: 10.1128/jb.92.2.521-523.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Levinthal C. Recombination in Phage T2: Its Relationship to Heterozygosis and Growth. Genetics. 1954 Mar;39(2):169–184. doi: 10.1093/genetics/39.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Levinthal C, Visconti N. Growth and Recombination in Bacterial Viruses. Genetics. 1953 Sep;38(5):500–511. doi: 10.1093/genetics/38.5.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rhoades M., Rhoades E. A. Terminal repetition in the DNA of bacteriophage T5. J Mol Biol. 1972 Aug 21;69(2):187–200. doi: 10.1016/0022-2836(72)90224-0. [DOI] [PubMed] [Google Scholar]
  10. SECHAUD J., KELLENBERGER E. Lyse précoce, provoquée par le chloroforme, chez les bactéries infectées par du bactériophage. Ann Inst Pasteur (Paris) 1956 Jan;90(1):102–106. [PubMed] [Google Scholar]
  11. STEINBERG C. M., EDGAR R. S. A critical test of a current theory of genetic recombination in bacteriophage. Genetics. 1962 Feb;47:187–208. doi: 10.1093/genetics/47.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. STREISINGER G., FRANKLIN N. C. Mutation and recombination at the host range genetic region of phage T2. Cold Spring Harb Symp Quant Biol. 1956;21:103–111. doi: 10.1101/sqb.1956.021.01.009. [DOI] [PubMed] [Google Scholar]
  13. Séchaud J., Streisinger G., Emrich J., Newton J., Lanford H., Reinhold H., Stahl M. M. Chromosome structure in phage T4, II. Terminal redundancy and heterozygosis. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1333–1339. doi: 10.1073/pnas.54.5.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Visconti N, Delbrück M. The Mechanism of Genetic Recombination in Phage. Genetics. 1953 Jan;38(1):5–33. doi: 10.1093/genetics/38.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WOLLMAN E. L., JACOB F. Etude génétique d'un bactériophage tempéré d'Escherichia Coli. II. Mécanisme de la recombinaison génétique. Ann Inst Pasteur (Paris) 1954 Dec;87(6):674–690. [PubMed] [Google Scholar]
  16. White R. L., Fox M. S. On the molecular basis of high negative interference. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1544–1548. doi: 10.1073/pnas.71.4.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES