Abstract
The characteristics of the carbamoylation of pig brain tubulin were examined by using the modification conditions with cyanate described previously [Mellado, Slebe + Maccioni (1980) Biochem. Int. I, 584--590]. The carbamoylation reaction resulted in an inhibition of microtubule assembly, which was dependent on the concentration of the modifying agent. This tubulin modification appears to inhibit the growth of microtubules. The presence of GTP did not protect tubulin against this inhibition. Electron microscopy showed a marked decrease in the number of tubules after carbamoylation, but no alterations were observed in the microtubule morphology. The incorporation of KN14CO into alpha- and beta-subunits with similar kinetics was also shown, and the carbamoylated residues were identified as epsilon-N-carbamoyl-lysine residues.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allende J. E., Seeds N. W., Conway T. W., Weissbach H. Guanosine triphosphate interaction with an amino acid polymerization factor from E. coli. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1566–1573. doi: 10.1073/pnas.58.4.1566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodie A. E., Babson J. R., Reed D. J. Inhibition of tubulin polymerization by nitrosourea-derived isocyanates. Biochem Pharmacol. 1980 Feb 15;29(4):652–654. doi: 10.1016/0006-2952(80)90392-5. [DOI] [PubMed] [Google Scholar]
- Garner M. H., Garner W. H., Gurd F. R. Determination of alpha-amino group pK by cyanate reaction. Application to peptides and myoglobins. J Biol Chem. 1973 Aug 10;248(15):5451–5455. [PubMed] [Google Scholar]
- Gaskin F., Cantor C. R., Shelanski M. L. Biochemical studies on the in vitro assembly and disassembly of microtubules. Ann N Y Acad Sci. 1975 Jun 30;253:133–146. doi: 10.1111/j.1749-6632.1975.tb19197.x. [DOI] [PubMed] [Google Scholar]
- Gaskin F., Cantor C. R., Shelanski M. L. Turbidimetric studies of the in vitro assembly and disassembly of porcine neurotubules. J Mol Biol. 1974 Nov 15;89(4):737–755. doi: 10.1016/0022-2836(74)90048-5. [DOI] [PubMed] [Google Scholar]
- Kuriyama R., Sakai H. Role of tubulin-SH groups in polymerization to microtubules. Functional-SH groups in tubulin for polymerization. J Biochem. 1974 Sep;76(3):651–654. doi: 10.1093/oxfordjournals.jbchem.a130609. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee Y. C., Houston L. L., Himes R. H. Inhibition of the self-assembly of tubulin by diethylpyrocarbonate and photooxidation. Biochem Biophys Res Commun. 1976 May 3;70(1):50–57. doi: 10.1016/0006-291x(76)91107-4. [DOI] [PubMed] [Google Scholar]
- Maccioni R. B., Vera J. C., Slebe J. C. Arginyl residues involvement in the microtubule assembly. Arch Biochem Biophys. 1981 Apr 1;207(2):248–255. doi: 10.1016/0003-9861(81)90031-x. [DOI] [PubMed] [Google Scholar]
- Maccioni R., Seeds N. W. Stoichiometry of GTP hydrolysis and tubulin polymerization. Proc Natl Acad Sci U S A. 1977 Feb;74(2):462–466. doi: 10.1073/pnas.74.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann K., Giesel M., Fasold H., Haase W. Isolation of native microtubules from porcine brain and characterization of SH groups essential for polymerization at the GTP binding sites. FEBS Lett. 1978 Aug 1;92(1):45–48. doi: 10.1016/0014-5793(78)80718-2. [DOI] [PubMed] [Google Scholar]
- Margolis R. L. Role of GTP hydrolysis in microtubule treadmilling and assembly. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1586–1590. doi: 10.1073/pnas.78.3.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
- Schmidt D. E., Jr, Westheimer F. H. PK of the lysine amino group at the active site of acetoacetate decarboxylase. Biochemistry. 1971 Mar 30;10(7):1249–1253. doi: 10.1021/bi00783a023. [DOI] [PubMed] [Google Scholar]
- Slebe J. C., Martinez-Carrion M. Carbamylation of aspartate transaminase and the pK value of the active site lysyl residue. J Biol Chem. 1976 Sep 25;251(18):5663–5669. [PubMed] [Google Scholar]
- Stark G. R. Reactions of cyanate with functional groups of proteins. 3. Reactions with amino and carboxyl groups. Biochemistry. 1965 Jun;4(6):1030–1036. doi: 10.1021/bi00882a008. [DOI] [PubMed] [Google Scholar]
- Timasheff S. N., Grisham L. M. In vitro assembly of cytoplasmic microtubules. Annu Rev Biochem. 1980;49:565–591. doi: 10.1146/annurev.bi.49.070180.003025. [DOI] [PubMed] [Google Scholar]
- Veronese F. M., Piszkiewicz D., Smith E. L. Inactivation of bovine glutamate dehydrogenase by carbamyl phosphate and cyanate. J Biol Chem. 1972 Feb 10;247(3):754–759. [PubMed] [Google Scholar]
- Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisenberg R. C., Borisy G. G., Taylor E. W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry. 1968 Dec;7(12):4466–4479. doi: 10.1021/bi00852a043. [DOI] [PubMed] [Google Scholar]