Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Sep;39(3):241–251. doi: 10.1016/S0006-3495(82)84514-1

X-ray diffraction and electron microscope study of phase separation in rod outer segment photoreceptor membrane multilayers.

S M Gruner, K J Rothschild, N A Clark
PMCID: PMC1328941  PMID: 7139024

Abstract

Phase separation in artificially stacked multilayers of isolated bovine retinal rod outer segment (ROS) membranes has been examined via x-ray diffraction and electron microscopy. Specimens were prepared by isopotential spin drying followed with partial hydration by equilibration against moist gas streams. Upon dehydration, the multilamellar membrane phase assumes a binary phase composition consisting of concentrated protein-containing lamellae interspersed with microdomains of hexagonally packed tubes of lipid in a HII configuration. The HII lattice is geometrically coupled to the lamellar phase with one set of hexagonal crystal planes co-planar to the local membrane lamellae. The hexagonal microdomains bear a striking resemblance to the "paracrystalline inclusions" observed in fast-frozen, intact frog ROS (Corless and Costello. 1981. Exp. Eye Res. 32:217). The lamellar lattice is characterized by an unusually small degree of disorder. Sharp lamellar diffraction with a 120 A unit cell is observed (at near total dehydration) to a resolution of 6 A. A model consistent with the data is that a multilamellar array of ROS disks is stable as long as the external disk surfaces are kept sufficiently far apart. If the distance between the membranes is allowed to shrink below a certain critical value, the disk lipids spontaneously convert to a nonbilayer phase. This suggests that the structure of the ROS is stabilized by an internal framework that acts to keep the disks apart from one another and from the plasmalemma. Thus, the necessity of avoiding phase separations may provide a rationale for the peculiar morphology of the ROS.

Full text

PDF
241

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. E., Maude M. B., Zimmerman W. Lipids of ocular tissues--X. Lipid composition of subcellular fractions of bovine retina. Vision Res. 1975 Oct;15:1087–1090. doi: 10.1016/0042-6989(75)90005-x. [DOI] [PubMed] [Google Scholar]
  2. Armond P. A., Staehelin L. A. Lateral and vertical displacement of integral membrane proteins during lipid phase transition in Anacystis nidulans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1901–1905. doi: 10.1073/pnas.76.4.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaurock A. E. Bacteriorhodospin: a trans-membrane pump containing alpha-helix. J Mol Biol. 1975 Apr 5;93(2):139–158. doi: 10.1016/0022-2836(75)90124-2. [DOI] [PubMed] [Google Scholar]
  4. Blaurock A. E., Wilkins M. H. Structure of frog photoreceptor membranes. Nature. 1969 Aug 30;223(5209):906–909. doi: 10.1038/223906a0. [DOI] [PubMed] [Google Scholar]
  5. Borochov H., Shinitzky M. Vertical displacement of membrane proteins mediated by changes in microviscosity. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4526–4530. doi: 10.1073/pnas.73.12.4526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chabre M. Diamagnetic anisotropy and orientation of alpha helix in frog rhodopsin and meta II intermediate. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5471–5474. doi: 10.1073/pnas.75.11.5471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Clark N. A., Rothschild K. J., Luippold D. A., Simon B. A. Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophys J. 1980 Jul;31(1):65–96. doi: 10.1016/S0006-3495(80)85041-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Corless J. M., Costello M. J. Paracrystalline inclusions associated with the disk membranes of frog retinal rod outer segments. Exp Eye Res. 1981 Feb;32(2):217–228. doi: 10.1016/0014-4835(81)90010-5. [DOI] [PubMed] [Google Scholar]
  9. Crain R. C., Marinetti G. V., O'Brien D. F. Topology of amino phospholipids in bovine retinal rod outer segment disk membranes. Biochemistry. 1978 Oct 3;17(20):4186–4192. doi: 10.1021/bi00613a012. [DOI] [PubMed] [Google Scholar]
  10. Cullis P. R., Hope M. J. Effects of fusogenic agent on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion. Nature. 1978 Feb 16;271(5646):672–674. doi: 10.1038/271672a0. [DOI] [PubMed] [Google Scholar]
  11. Cullis P. R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim Biophys Acta. 1979 Dec 20;559(4):399–420. doi: 10.1016/0304-4157(79)90012-1. [DOI] [PubMed] [Google Scholar]
  12. Cullis P. R., de Kruijff B. The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study. Biochim Biophys Acta. 1978 Oct 19;513(1):31–42. doi: 10.1016/0005-2736(78)90109-8. [DOI] [PubMed] [Google Scholar]
  13. De Grip W. J., Daemen F. J., Bonting S. L. Isolation and purification of bovine rhodopsin. Methods Enzymol. 1980;67:301–320. doi: 10.1016/s0076-6879(80)67038-4. [DOI] [PubMed] [Google Scholar]
  14. De Grip W. J., Drenthe E. H., Van Echteld C. J., De Kruijff B., Verkleij A. J. A possible role of rhodopsin in maintaining bilayer structure in the photoreceptor membrane. Biochim Biophys Acta. 1979 Dec 12;558(3):330–337. doi: 10.1016/0005-2736(79)90269-4. [DOI] [PubMed] [Google Scholar]
  15. DeSa R., Hastings J. W. The characterization of scintillons. Bioluminescent particles from the marine dinoflagellate, Gonyaulax polyedra. J Gen Physiol. 1968 Jan;51(1):105–122. doi: 10.1085/jgp.51.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Deamer D. W., Leonard R., Tardieu A., Branton D. Lamellar and hexagonal lipid phases visualized by freeze-etching. Biochim Biophys Acta. 1970;219(1):47–60. doi: 10.1016/0005-2736(70)90060-x. [DOI] [PubMed] [Google Scholar]
  17. Deese A. J., Dratz E. A., Brown M. F. Retinal rod outer segment lipids form bilayers in the presence and absence of rhodopsin: a 31P NMR study. FEBS Lett. 1981 Feb 9;124(1):93–99. doi: 10.1016/0014-5793(81)80061-0. [DOI] [PubMed] [Google Scholar]
  18. Gulik-Krzywicki T. Structural studies of the associations between biological membrane components. Biochim Biophys Acta. 1975 Mar 25;415(1):1–28. doi: 10.1016/0304-4157(75)90015-5. [DOI] [PubMed] [Google Scholar]
  19. Henderson R. The structure of the purple membrane from Halobacterium hallobium: analysis of the X-ray diffraction pattern. J Mol Biol. 1975 Apr 5;93(2):123–138. doi: 10.1016/0022-2836(75)90123-0. [DOI] [PubMed] [Google Scholar]
  20. Herbette L., Marquardt J., Scarpa A., Blasie J. K. A direct analysis of lamellar x-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum. Biophys J. 1977 Nov;20(2):245–272. doi: 10.1016/S0006-3495(77)85547-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hui S. W., Stewart T. P. 'Lipidic particles' are intermembrane attachment sites. Nature. 1981 Apr 2;290(5805):427–428. doi: 10.1038/290427a0. [DOI] [PubMed] [Google Scholar]
  22. Litman B. J. Rhodopsin: its molecular substructure and phospholipid interactions. Photochem Photobiol. 1979 Apr;29(4):671–677. doi: 10.1111/j.1751-1097.1979.tb07747.x. [DOI] [PubMed] [Google Scholar]
  23. Michel-Villaz M., Saibil H. R., Chabre M. Orientation of rhodopsin alpha-helices in in retinal rod outer segment membranes studied by infrared linear dichroism. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4405–4408. doi: 10.1073/pnas.76.9.4405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miljanich G. P., Nemes P. P., White D. L., Dratz E. A. The asymmetric transmembrane distribution of phosphatidylethanolamine, phosphatidylserine, and fatty acids of the bovine retinal rod outer segment disk membrane. J Membr Biol. 1981;60(3):249–255. doi: 10.1007/BF01992562. [DOI] [PubMed] [Google Scholar]
  25. Osborne H. B. The hydrophobic heart of rhodopsin revealed by an infrared 1H-2H exchange study. FEBS Lett. 1977 Dec 15;84(2):217–220. doi: 10.1016/0014-5793(77)80691-1. [DOI] [PubMed] [Google Scholar]
  26. Quinn P. J., Chapman D. The dynamics of membrane structure. CRC Crit Rev Biochem. 1980;8(1):1–117. doi: 10.3109/10409238009105466. [DOI] [PubMed] [Google Scholar]
  27. Raubach R. A., Nemes P. P., Dratz E. A. Chemical labeling and freeze-fracture studies on the localization of rhodopsin in the rod outer segment disk membrane. Exp Eye Res. 1974 Jan;18(1):1–12. doi: 10.1016/0014-4835(74)90038-4. [DOI] [PubMed] [Google Scholar]
  28. Raviola G., Raviola E. Paracellular route of aqueous outflow in the trabecular meshwork and canal of Schlemm. A freeze-fracture study of the endothelial junctions in the sclerocorneal angel of the macaque monkey eye. Invest Ophthalmol Vis Sci. 1981 Jul;21(1 Pt 1):52–72. [PubMed] [Google Scholar]
  29. Rothschild K. J., Andrew J. R., De Grip W. J., Stanley H. E. Opsin structure probed by raman spectroscopy of photoreceptor membranes. Science. 1976 Mar 19;191(4232):1176–1178. doi: 10.1126/science.1257742. [DOI] [PubMed] [Google Scholar]
  30. Rothschild K. J., DeGrip W. J., Sanches R. Fourier transform infrared study of photoreceptor membrane. I. Group assignments based on rhodopsin delipidation and reconstitution. Biochim Biophys Acta. 1980 Mar 13;596(3):338–351. doi: 10.1016/0005-2736(80)90121-2. [DOI] [PubMed] [Google Scholar]
  31. Rothschild K. J., Rosen K. M., Clark N. A. Incorporation of photoreceptor membrane into a multilamellar film. Biophys J. 1980 Jul;31(1):45–52. doi: 10.1016/S0006-3495(80)85039-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rothschild K. J., Sanches R., Hsiao T. L., Clark N. A. A spectroscopic study of rhodopsin alpha-helix orientation. Biophys J. 1980 Jul;31(1):53–64. doi: 10.1016/S0006-3495(80)85040-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schnetkamp P. P. Ion selectivity of the cation transport system of isolated intact cattle rod outer segments: evidence for a direct communication between the rod plasma membrane and the rod disk membranes. Biochim Biophys Acta. 1980 May 8;598(1):66–90. doi: 10.1016/0005-2736(80)90266-7. [DOI] [PubMed] [Google Scholar]
  34. Schwartz S., Cain J. E., Dratz E. A., Blasie J. K. An analysis of lamellar x-ray diffraction from disordered membrane multilayers with application to data from retinal rod outer segments. Biophys J. 1975 Dec;15(12):1201–1233. doi: 10.1016/S0006-3495(75)85895-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wunderlich F., Ronai A., Speth V., Seelig J., Blume A. Thermotropic lipid clustering in tetrahymena membranes. Biochemistry. 1975 Aug 26;14(17):3730–3735. doi: 10.1021/bi00688a002. [DOI] [PubMed] [Google Scholar]
  36. Young R. W. Proceedings: Biogenesis and renewal of visual cell outer segment membranes. Exp Eye Res. 1974 Mar;18(3):215–223. doi: 10.1016/0014-4835(74)90150-x. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES