Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1982 Oct;40(1):77–82. doi: 10.1016/S0006-3495(82)84460-3

A biophysical model of lysozyme self-association.

O G Hampe, C V Tondo, A Hasson-Voloch
PMCID: PMC1328975  PMID: 7139037

Abstract

The concentration dependence of the self-association of hen egg-white lysozyme was studied spectrophotometrically at pH 6, 25 degrees C, and low ionic strength within a concentration range of 2.5-50 micrograms/ml. Of several possible mathematical models, an ideal or nearly ideal two-stage model representing an equilibrium between monomers and dimers and between dimers and trimers best describes the data. The dimerization and trimerization constants were found to be 2.5 x 10(-2) and 38 x 10(-2). Dialysis experiments confirmed that the mechanism involves three associating species. A "head-to-tail" contact between the associating sites was inferred from dialysis studies of the effect of indole and imidazole derivatives on lysozyme self-association.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams E. T., Jr, Filmer D. L. Sedimentation equilibrium in reacting systems. IV. Verification of the theory. Biochemistry. 1966 Sep;5(9):2971–2985. doi: 10.1021/bi00873a029. [DOI] [PubMed] [Google Scholar]
  2. Banerjee S. K., Pogolotti A., Jr, Rupley J. A. Self-association of lysozyme. Thermochemical measurements: effect of chemical modification of Trp-62, Trp-108, and Glu-35. J Biol Chem. 1975 Oct 25;250(20):8260–8266. [PubMed] [Google Scholar]
  3. Charlemagne D., Jollès P. Inhibition par des polymères de la Nacétylglucosamine de l'activité lysante de lysozymes vis-à-vis de Micrococcus luteus: influence du pH et de la force uonique. C R Acad Sci Hebd Seances Acad Sci D. 1974 Jul 15;279(3):299–302. [PubMed] [Google Scholar]
  4. Chipman D. M., Sharon N. Mechanism of lysozyme action. Science. 1969 Aug 1;165(3892):454–465. doi: 10.1126/science.165.3892.454. [DOI] [PubMed] [Google Scholar]
  5. Deonier R. C., Williams J. W. Self-association of muramidase (lysozyme) in solution at 25 degrees, pH 7.0, and I = 0.20. Biochemistry. 1970 Oct 27;9(22):4260–4267. doi: 10.1021/bi00824a004. [DOI] [PubMed] [Google Scholar]
  6. Derechin M. Analysis of associating systems using the multinomial theory. Biochemistry. 1971 Dec 21;10(26):4981–4986. doi: 10.1021/bi00802a023. [DOI] [PubMed] [Google Scholar]
  7. Ferreira A. T., Hampe O. G., Paiva A. C. The conformation of angiotensin II in aqueous solution. II. Dialysis and gel filtration behavior of [Asn 1-Val 5]-angiotensin II. Biochemistry. 1969 Aug;8(8):3483–3487. doi: 10.1021/bi00836a052. [DOI] [PubMed] [Google Scholar]
  8. Goldman R., Kedem O., Katchalski E. Kinetic behavior of alkaline phosphatase--collodion membranes. Biochemistry. 1971 Jan 5;10(1):165–172. doi: 10.1021/bi00777a024. [DOI] [PubMed] [Google Scholar]
  9. Goldman R., Kedem O., Silman I. H., Caplan S. R., Katchalski E. Papain-collodion membranes. I. Preparation and properties. Biochemistry. 1968 Feb;7(2):486–500. [PubMed] [Google Scholar]
  10. Goldman R., Lenhoff H. M. Glucose-6-phosphate dehydrogenase adsorbed on collodion membranes. Biochim Biophys Acta. 1971 Aug 20;242(2):514–518. doi: 10.1016/0005-2744(71)90246-4. [DOI] [PubMed] [Google Scholar]
  11. HAMAGUCHI K., KURONO A. STRUCTURE OF MURAMIDASE (LYSOZYME). I. THE EFFECT OF GUANIDINE HYDROCHLORIDE ON MURAMIDASE. J Biochem. 1963 Aug;54:111–122. [PubMed] [Google Scholar]
  12. Hampe O. G. Conformation of lysozyme in aqueous solution. Effect of ionic strength and protein concentration. Eur J Biochem. 1972 Nov 21;31(1):32–37. doi: 10.1111/j.1432-1033.1972.tb02496.x. [DOI] [PubMed] [Google Scholar]
  13. Mouton A., Jolles J. On the identity of human lysozymes isolated from normal and abnormal tissues or secretions. FEBS Lett. 1969 Aug;4(4):337–340. doi: 10.1016/0014-5793(69)80270-x. [DOI] [PubMed] [Google Scholar]
  14. SOPHIANOPOULOS A. J., VAN HOLDE K. E. Evidence for dimerization of lysozyme in alkaline solution. J Biol Chem. 1961 Dec;236:PC82–PC83. [PubMed] [Google Scholar]
  15. SOPHIANOPOULOS A. J., VANHOLDE K. E. PHYSICAL STUDIES OF MURAMIDASE (LYSOZYME). II. PH-DEPENDENT DIMERIZATION. J Biol Chem. 1964 Aug;239:2516–2524. [PubMed] [Google Scholar]
  16. Shindo H., Cohen J. S., Rupley J. A. Self-association of hen egg-white lysozyme as studied by nuclear magnetic resonance. Biochemistry. 1977 Aug 23;16(17):3879–3882. doi: 10.1021/bi00636a025. [DOI] [PubMed] [Google Scholar]
  17. Sophianopoulos A. J. Association sites of lysozyme in solution. I. The active site. J Biol Chem. 1969 Jun 25;244(12):3188–3193. [PubMed] [Google Scholar]
  18. Studebaker J. F., Sykes B. D., Wien R. A nuclear magnetic resonance study of lysozyme inhibition. Effects of dimerization and pH on saccharide binding. J Am Chem Soc. 1971 Sep 8;93(18):4579–4585. doi: 10.1021/ja00747a040. [DOI] [PubMed] [Google Scholar]
  19. Swan I. D. The inhibition of hen egg-white lysozyme by imidazole and indole derivatives. J Mol Biol. 1972 Mar 14;65(1):59–62. doi: 10.1016/0022-2836(72)90491-3. [DOI] [PubMed] [Google Scholar]
  20. WILCOX F. H., Jr, DANIEL L. J. Reduced lysis at high concentrations of lysozyme. Arch Biochem Biophys. 1954 Oct;52(2):305–312. doi: 10.1016/0003-9861(54)90128-9. [DOI] [PubMed] [Google Scholar]
  21. Wooten J. B., Cohen J. S. Protein mobility and self-association by deuterium nuclear magnetic resonance. Biochemistry. 1979 Sep 18;18(19):4188–4191. doi: 10.1021/bi00586a023. [DOI] [PubMed] [Google Scholar]
  22. Zehavi U., Lustig A. On the reversibility of substrate-induced dissociation of lysozyme aggregates. Native and reacted lysozyme. Biochim Biophys Acta. 1971 Apr 27;236(1):127–130. doi: 10.1016/0005-2795(71)90157-7. [DOI] [PubMed] [Google Scholar]
  23. Zehavi U., Lustig A. Substrate-induced dissociation of lysozyme dimers. Biochim Biophys Acta. 1969 Dec 23;194(2):532–539. doi: 10.1016/0005-2795(69)90115-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES