Abstract
1. Tuning properties and spontaneous discharge rate of single cochlear fibres in the anaesthetized cat were determined under conditions where millimolar concentrations of KCN were instilled into the scala tympani. 2. Short-term effects on the tuning properties were obtained, in which the threshold of the low threshold sharply tuned tip segment of the frequency-threshold ('tuning') curve (f.t.c.) was elevated by up to 40 db, without changes in the threshold of the low frequency 'tail' segment of the f.t.c., or necessarily changes in the spontaneous and maximally evoked activity. These changes were accompanied by a shift of the characteristic frequency tip segment towards lower frequencies. All these effects could be reversed. 3. The long-term effects of repeated KCN instillations produced irreversible changes similar to the short-term effects. 4. These changes correlated well with depression of the amplitude of the gross cochlear action potential but not with the cochlear microphonic potential, both recorded at the round window. 5. Instillations of tetrodotoxin (TTX) rapidly reduced and blocked the cochlear fibre discharges without effects on their tuning, in contrast to the effects of KCN.
Full text
PDF























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beránek R., Vyskocil F. The action of tubocurarine and atropine on the normal and denervated rat diaphragm. J Physiol. 1967 Jan;188(1):53–66. doi: 10.1113/jphysiol.1967.sp008123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beránek R., Vyskocil F. The effect of atropine on the frog sartorius neuromuscular junction. J Physiol. 1968 Mar;195(2):493–503. doi: 10.1113/jphysiol.1968.sp008470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E. F., Klinke R. The effects of intracochlear and systemic furosemide on the properties of single cochlear nerve fibres in the cat. J Physiol. 1982 Oct;331:409–427. doi: 10.1113/jphysiol.1982.sp014379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E. F. The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol. 1972 Oct;226(1):263–287. doi: 10.1113/jphysiol.1972.sp009984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E. F. The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea. Audiology. 1975;14(5-6):419–442. doi: 10.3109/00206097509071754. [DOI] [PubMed] [Google Scholar]
- Galley N., Klinke R., Oertel W., Pause M., Storch W. H. The effect of intracochlearly administered acetylcholine-blocking agents on the efferent synapses of the cochlea. Brain Res. 1973 Dec 21;64:55–63. doi: 10.1016/0006-8993(73)90170-4. [DOI] [PubMed] [Google Scholar]
- Guinan J. J., Jr, Peake W. T. Middle-ear characteristics of anesthetized cats. J Acoust Soc Am. 1967 May;41(5):1237–1261. doi: 10.1121/1.1910465. [DOI] [PubMed] [Google Scholar]
- JOHNSTONE B. M. THE RELATION BETWEEN ENDOLYMPH AND THE ENDOCOCHLEAR POTENTIAL DURING ANOXIA. Acta Otolaryngol. 1965 Jul-Aug;60:113–120. doi: 10.3109/00016486509126994. [DOI] [PubMed] [Google Scholar]
- Katsuki Y., Yanagisawa K., Kanzaki J. Tetraethylammonium and tetrodotoxin: effects on cochlear potentials. Science. 1966 Mar 25;151(3717):1544–1545. doi: 10.1126/science.151.3717.1544. [DOI] [PubMed] [Google Scholar]
- Kemp D. T. Towards a model for the origin of cochlear echoes. Hear Res. 1980 Jun;2(3-4):533–548. doi: 10.1016/0378-5955(80)90091-x. [DOI] [PubMed] [Google Scholar]
- Kiang N. Y., Moxon E. C., Levine R. A. Auditory-nerve activity in cats with normal and abnormal cochleas. In: Sensorineural hearing loss. Ciba Found Symp. 1970:241–273. doi: 10.1002/9780470719756.ch15. [DOI] [PubMed] [Google Scholar]
- Kim D. O. Cochlear mechanics: implications of electrophysiological and acoustical observations. Hear Res. 1980 Jun;2(3-4):297–317. doi: 10.1016/0378-5955(80)90064-7. [DOI] [PubMed] [Google Scholar]
- Klinke R., Evans E. F. Evidence that catecholamines are not the afferent transmitter in the cochlea. Exp Brain Res. 1977 Jun 27;28(3-4):315–324. doi: 10.1007/BF00235713. [DOI] [PubMed] [Google Scholar]
- Klinke R., Oertel W. Amino acids - putative afferent transmitter in the cochlea? Exp Brain Res. 1977 Oct 24;30(1):145–148. doi: 10.1007/BF00237865. [DOI] [PubMed] [Google Scholar]
- Klinke R., Oertel W. Evidence that 5-HT is not the afferent transmitter in the cochlea. Exp Brain Res. 1977 Oct 24;30(1):141–143. doi: 10.1007/BF00237864. [DOI] [PubMed] [Google Scholar]
- Klinke R., Oertel W. Evidence that GABA is not the afferent transmitter in the cochlea. Exp Brain Res. 1977 Jun 27;28(3-4):311–314. doi: 10.1007/BF00235712. [DOI] [PubMed] [Google Scholar]
- Konishi T., Kelsey E. Effect of cyanide on cochlear potentials. Acta Otolaryngol. 1968 Apr;65(4):381–390. doi: 10.3109/00016486809120979. [DOI] [PubMed] [Google Scholar]
- Liberman M. C., Kiang N. Y. Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl. 1978;358:1–63. [PubMed] [Google Scholar]
- Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
- Rhode W. S. Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am. 1971 Apr;49(4 Suppl):1218+–1218+. doi: 10.1121/1.1912485. [DOI] [PubMed] [Google Scholar]
- Rhode W. S. Some observations on cochlear mechanics. J Acoust Soc Am. 1978 Jul;64(1):158–176. doi: 10.1121/1.381981. [DOI] [PubMed] [Google Scholar]
- Sachs M. B., Abbas P. J. Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am. 1974 Dec;56(6):1835–1847. doi: 10.1121/1.1903521. [DOI] [PubMed] [Google Scholar]
- Spector G. J. The ultrastructural cytochemistry of lactic dehydrogenase, succinic dehydrogenase, dihydro-nicotinamide adenine dinucleotide diaphorase and cytochrome oxidase activities in hair cell mitochondria of the guinea pig cochlea. J Histochem Cytochem. 1975 Mar;23(3):216–234. doi: 10.1177/23.3.236341. [DOI] [PubMed] [Google Scholar]
- Stopp P. E. Perfusion of scala tympani as a means of studying the cochlear transducer process. In: Sensorineural hearing loss. Ciba Found Symp. 1970:193–198. doi: 10.1002/9780470719756.ch11. [DOI] [PubMed] [Google Scholar]
