Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1981 Mar;312:125–142. doi: 10.1113/jphysiol.1981.sp013620

The effect of local anaesthetics on strophanthidin toxicity in canine cardiac Purkinje fibres

M L Bhattacharyya 1,*, M Vassalle 1
PMCID: PMC1275545  PMID: 7264989

Abstract

1. Canine Purkinje fibres were superfused in vitro and the electrical and mechanical effects of the local anaesthetics benzocaine and procaine were studied in the absence and in the presence of other agents.

2. Both benzocaine (1 × 10-4-5 × 10-4 m) and procaine (6 × 10-5-2·5 × 10-4 m) decreased slightly the amplitude of the upstroke and markedly the duration of the action potential. The plateau was shifted to more negative values and the force of contraction was decreased. These effects were dose-dependent.

3. The local anaesthetics abolished the spontaneous activity induced by strophanthidin (5 × 10-7 m) by flattening the oscillatory potential in diastole and increased the force of contraction under these circumstances.

4. The local anaesthetics significantly delayed the time of the onset of the spontaneous activity induced by strophanthidin (10-6 m). Also, the intensity of the stimuli had to be increased and the rate of discharge of intoxicated fibres was slower in the presence of local anaesthetics. In contrast, the positive inotropic effect was little affected.

5. The local anaesthetics reduced but did not block the inotropic action of norepinephrine and high Ca; and did not abolish (while Mn did) small action potential in 27 mm-K-depolarized fibres.

6. In fibres treated with local anaesthetics, lowering [Ca]o did not result in a force rebound and administration of caffeine or exposure to low Na resulted in a larger increase in force.

7. In fibres loaded with Ca, local anaesthetics caused an increase in force.

8. Local anaesthetics decreased the force more when the external Na concentration was lower.

9. This work shows that the local anaesthetics alter the mechanical performance of Purkinje fibres and lead to a depression of the strophanthidin induced oscillatory potential. As for the mechanism for these changes, the present experiments support the hypothesis that local anaesthetic agents have an antiarrhythmic action by decreasing intracellular Na and therefore intracellular Ca as suggested by Perry, McKinney & DeWeer (1978) on the basis of experiments on nerve.

Full text

PDF
125

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W., Best P. M. Effects of tetracaine on displacement currents and contraction of frog skeletal muscle. J Physiol. 1976 Nov;262(3):583–611. doi: 10.1113/jphysiol.1976.sp011611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Attwell D., Cohen I., Eisner D., Ohba M., Ojeda C. The steady state TTX-sensitive ("window") sodium current in cardiac Purkinje fibres. Pflugers Arch. 1979 Mar 16;379(2):137–142. doi: 10.1007/BF00586939. [DOI] [PubMed] [Google Scholar]
  3. BIANCHI C. P., SHANES A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol. 1959 Mar 20;42(4):803–815. doi: 10.1085/jgp.42.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bassett A. L., Hoffman B. F. Antiarrhythmic drugs: electrophysiological actions. Annu Rev Pharmacol. 1971;11:143–170. doi: 10.1146/annurev.pa.11.040171.001043. [DOI] [PubMed] [Google Scholar]
  6. Blanchi C. P., Strobel G. E. Modes of action of local anesthetics in nerve and muscle in relation to their uptake and distribution. Trans N Y Acad Sci. 1968 Jun;30(8):1082–1092. doi: 10.1111/j.2164-0947.1968.tb02557.x. [DOI] [PubMed] [Google Scholar]
  7. Brennan F. J., Cranefield P. F., Wit A. L. Effects of lidocaine and on slow response and depressed fast response action potentials of canine cardiac Purkinje fibers. J Pharmacol Exp Ther. 1978 Feb;204(2):312–324. [PubMed] [Google Scholar]
  8. Caputo C., Vergara J., Bezanilla F. Local anaesthetics inhibit tension development and Nile blue fluorescence signals in frog muscle fibres. Nature. 1979 Feb 1;277(5695):400–402. doi: 10.1038/277400a0. [DOI] [PubMed] [Google Scholar]
  9. Carmeliet E., Verdonck F. Effects of aprindine and lidocaine on transmembrane potentials and radioactive K efflux in different cardiac tissues. Acta Cardiol. 1974;Suppl 18:73–90. [PubMed] [Google Scholar]
  10. Carmeliet E., Vereecke J. Adrenaline and the plateau phase of the cardiac action potential. Importance of Ca++, Na+ and K+ conductance. Pflugers Arch. 1969;313(4):300–315. doi: 10.1007/BF00593955. [DOI] [PubMed] [Google Scholar]
  11. Deitmer J. W., Ellis D. The intracellular sodium activity of sheep heart Purkinje fibres: effects of local anaesthetics and tetrodotoxin. J Physiol. 1980 Mar;300:269–282. doi: 10.1113/jphysiol.1980.sp013161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eisner D. A., Lederer W. J. A cellular basis for lidocaine's anti-arrhythmic action [proceedings]. J Physiol. 1979 Oct;295:25P–26P. [PubMed] [Google Scholar]
  13. Eisner D. A., Lederer W. J., Noble D. Caffeine and tetracaine abolish the slow inward calcium current in sheep cardiac Purkinje fibres [proceedings]. J Physiol. 1979 Aug;293:76P–77P. [PubMed] [Google Scholar]
  14. Feinstein M. B. Inhibition of contraction and calcium exchange-ability in rat uterus by local anesthetics. J Pharmacol Exp Ther. 1966 Jun;152(3):516–524. [PubMed] [Google Scholar]
  15. Ferrier G. R. Digitalis arrhythmias: role of oscillatory afterpotentials. Prog Cardiovasc Dis. 1977 May-Jun;19(6):459–474. doi: 10.1016/0033-0620(77)90010-x. [DOI] [PubMed] [Google Scholar]
  16. Ferrier G. R., Moe G. K. Effect of calcium on acetylstrophanthidin-induced transient depolarizations in canine Purkinje tissue. Circ Res. 1973 Nov;33(5):508–515. doi: 10.1161/01.res.33.5.508. [DOI] [PubMed] [Google Scholar]
  17. Hagiwara S., Nakajima S. Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine, and manganese ions. J Gen Physiol. 1966 Mar;49(4):793–806. doi: 10.1085/jgp.49.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Josephson I., Sperelakis N. Local anesthetic blockade of Ca2+ -mediated action potentials in cardiac muscle. Eur J Pharmacol. 1976 Dec;40(2):201–208. doi: 10.1016/0014-2999(76)90053-4. [DOI] [PubMed] [Google Scholar]
  20. Kass R. S., Lederer W. J., Tsien R. W., Weingart R. Role of calcium ions in transient inward currents and aftercontractions induced by strophanthidin in cardiac Purkinje fibres. J Physiol. 1978 Aug;281:187–208. doi: 10.1113/jphysiol.1978.sp012416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kerrick W. G., Best P. M. Calcium ion release in mechanically disrupted heart cells. Science. 1974 Feb 1;183(4123):435–437. doi: 10.1126/science.183.4123.435. [DOI] [PubMed] [Google Scholar]
  22. Kohlhardt M., Bauer B., Krause H., Fleckenstein A. Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors. Pflugers Arch. 1972;335(4):309–322. doi: 10.1007/BF00586221. [DOI] [PubMed] [Google Scholar]
  23. LUTTGAU H. C., NIEDERGERKE R. The antagonism between Ca and Na ions on the frog's heart. J Physiol. 1958 Oct 31;143(3):486–505. doi: 10.1113/jphysiol.1958.sp006073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lee K. S., Klaus W. The subcellular basis for the mechanism of inotropic action of cardiac glycosides. Pharmacol Rev. 1971 Sep;23(3):193–261. [PubMed] [Google Scholar]
  25. Lin C. I., Vassalle M. Role of sodium in strophanthidin toxicity of Purkinje fibers. Am J Physiol. 1978 Apr;234(4):H477–H486. doi: 10.1152/ajpheart.1978.234.4.H477. [DOI] [PubMed] [Google Scholar]
  26. Pappano A. J. Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibers depolarized by potassium. Circ Res. 1970 Sep;27(3):379–390. doi: 10.1161/01.res.27.3.379. [DOI] [PubMed] [Google Scholar]
  27. Perry J. G., McKinney L., De Weer P. The cellular mode of action of the anti-epileptic drug 5,5-diphenylhydantoin. Nature. 1978 Mar 16;272(5650):271–273. doi: 10.1038/272271a0. [DOI] [PubMed] [Google Scholar]
  28. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rosen M. R., Danilo P., Jr, Alonso M. B., Pippenger C. E. Effects of therapeutic concentrations of diphenylhydantoin on transmembrane potentials of normal and depressed Purkinje fibers. J Pharmacol Exp Ther. 1976 Jun;197(3):594–604. [PubMed] [Google Scholar]
  30. Rosen M. R., Danilo P., Jr Effects of tetrodotoxin, lidocaine, verapamil, and AHR-2666 on Ouabain-induced delayed afterdepolarizations in canine Purkinje fibers. Circ Res. 1980 Jan;46(1):117–124. doi: 10.1161/01.res.46.1.117. [DOI] [PubMed] [Google Scholar]
  31. SHANES A. M., FREYGANG W. H., GRUNDFEST H., AMATNIEK E. Anesthetic and calcium action in the voltage-clamped squid giant axon. J Gen Physiol. 1959 Mar 20;42(4):793–802. doi: 10.1085/jgp.42.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. TAYLOR R. E. Effect of procaine on electrical properties of squid axon membrane. Am J Physiol. 1959 May;196(5):1071–1078. doi: 10.1152/ajplegacy.1959.196.5.1071. [DOI] [PubMed] [Google Scholar]
  33. THESLEFF S. The effect of anesthetic agents on skeletal muscle membrane. Acta Physiol Scand. 1956 Nov 5;37(4):335–349. doi: 10.1111/j.1748-1716.1956.tb01369.x. [DOI] [PubMed] [Google Scholar]
  34. Thorpe W. R. Some effects of caffeine and quinidine on sarcoplasmic reticulum of skeletal and cardiac muscle. Can J Physiol Pharmacol. 1973 Jul;51(7):499–503. doi: 10.1139/y73-073. [DOI] [PubMed] [Google Scholar]
  35. WEIDMANN S. Effects of calcium ions and local anesthetics on electrical properties of Purkinje fibres. J Physiol. 1955 Sep 28;129(3):568–582. doi: 10.1113/jphysiol.1955.sp005379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Weld F. M., Bigger J. T., Jr Effect of lidocaine on the early inward transient current in sheep cardiac Purkinje fibers. Circ Res. 1975 Nov;37(5):630–639. doi: 10.1161/01.res.37.5.630. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES