Skip to main content
Journal of Anatomy logoLink to Journal of Anatomy
. 1981 Oct;133(Pt 3):389–396.

Formation of osteoclasts from blood monocytes during 1 alpha-OH Vit D-stimulated bone resorption in mice.

S M Tinkler, J E Linder, D M Williams, N W Johnson
PMCID: PMC1167610  PMID: 7328045

Abstract

In order to investigate a monocyte origin for osteoclasts, tritiated thymidine labelled blood monocytes, harvested from the blood of donor mice, were injected intravenously into syngeneic recipient animals in which osteoclast formation was being stimulated by concomitant intraperitoneal injections of 1 alpha-hydroxycholecalciferol. Labelled osteoclasts were found in autoradiographs prepared from the femurs of recipient mice, demonstrating for the first time that, during hormonally stimulated osteoclast formation, blood monocytes form one source of osteoclasts.

Full text

PDF
389

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ash P., Loutit J. F., Townsend K. M. Osteoclasts derived from haematopoietic stem cells. Nature. 1980 Feb 14;283(5748):669–670. doi: 10.1038/283669a0. [DOI] [PubMed] [Google Scholar]
  2. FISCHMAN D. A., HAY E. D. Origin of osteoclasts from mononuclear leucocytes in regenerating newt limbs. Anat Rec. 1962 Aug;143:329–337. doi: 10.1002/ar.1091430402. [DOI] [PubMed] [Google Scholar]
  3. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  4. Göthlin G., Ericsson J. L. On the histogenesis of the cells in fracture callus. Electron microscopic autoradiographic observations in parabiotic rats and studies on labeled monocytes. Virchows Arch B Cell Pathol. 1973 Mar 30;12(4):318–329. [PubMed] [Google Scholar]
  5. Göthlin G., Ericsson J. L. The osteoclast: review of ultrastructure, origin, and structure-function relationship. Clin Orthop Relat Res. 1976 Oct;(120):201–231. [PubMed] [Google Scholar]
  6. Hall B. K. The origin and fate of osteoclasts. Anat Rec. 1975 Sep;183(1):1–11. doi: 10.1002/ar.1091830102. [DOI] [PubMed] [Google Scholar]
  7. JEE W. S., NOLAN P. D. ORIGIN OF OSTEOCLASTS FROM THE FUSION OF PHAGOCYTES. Nature. 1963 Oct 19;200:225–226. doi: 10.1038/200225a0. [DOI] [PubMed] [Google Scholar]
  8. Jotereau F. V., Le Douarin N. M. The development relationship between osteocytes and osteoclasts: a study using the quail-chick nuclear marker in endochondral ossification. Dev Biol. 1978 Apr;63(2):253–265. doi: 10.1016/0012-1606(78)90132-x. [DOI] [PubMed] [Google Scholar]
  9. Kahn A. J., Simmons D. J. Investigation of cell lineage in bone using a chimaera of chick and quial embryonic tissue. Nature. 1975 Nov 27;258(5533):325–327. doi: 10.1038/258325a0. [DOI] [PubMed] [Google Scholar]
  10. Loutit J. F., Sansom J. M. Osteopetrosis of microphthalmic mice -- a defect of the hematopoietic stem cell.? Calcif Tissue Res. 1976 Jun 14;20(3):251–259. doi: 10.1007/BF02546413. [DOI] [PubMed] [Google Scholar]
  11. Marks S. C., Jr, Schneider G. B. Evidence for a relationship between lymphoid cells and osteoclasts: bone resorption restored in ia (osteopetrotic) rats by lymphocytes, monocytes and macrophages from a normal littermate. Am J Anat. 1978 Jul;152(3):331–341. doi: 10.1002/aja.1001520306. [DOI] [PubMed] [Google Scholar]
  12. Milhaud G., Labat M. L. Osteopetrosis reconsidered as a curable immune disorder. Biomedicine. 1979 Jun;30(2):71–75. [PubMed] [Google Scholar]
  13. Oliver C., Essner E. Distribution of anomalous lysosomes in the beige mouse: a homologue of Chediak-Higashi syndrome. J Histochem Cytochem. 1973 Mar;21(3):218–228. doi: 10.1177/21.3.218. [DOI] [PubMed] [Google Scholar]
  14. Owen M. Histogenesis of bone cells. Calcif Tissue Res. 1978 Aug 18;25(3):205–207. doi: 10.1007/BF02010770. [DOI] [PubMed] [Google Scholar]
  15. Scott B. L. Thymidine-3H electron microscope radioautography of osteogenic cells in the fetal rat. J Cell Biol. 1967 Oct;35(1):115–126. doi: 10.1083/jcb.35.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. TONNA E. A. Osteoclasts and the aging skeleton: a cytological, cytochemical and autoradiographic study. Anat Rec. 1960 Jul;137:251–269. doi: 10.1002/ar.1091370304. [DOI] [PubMed] [Google Scholar]
  17. Walker D. G. Control of bone resorption by hematopoietic tissue. The induction and reversal of congenital osteopetrosis in mice through use of bone marrow and splenic transplants. J Exp Med. 1975 Sep 1;142(3):651–663. doi: 10.1084/jem.142.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Whitelaw D. M., Batho H. F. The distribution of monocytes in the rat. Cell Tissue Kinet. 1972 May;5(3):215–225. doi: 10.1111/j.1365-2184.1972.tb00360.x. [DOI] [PubMed] [Google Scholar]
  19. YOUNG R. W. Cell proliferation and specialization during endochondral osteogenesis in young rats. J Cell Biol. 1962 Sep;14:357–370. doi: 10.1083/jcb.14.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. van Furth R., Cohn Z. A. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968 Sep 1;128(3):415–435. doi: 10.1084/jem.128.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Anatomy are provided here courtesy of Anatomical Society of Great Britain and Ireland

RESOURCES