Abstract
After labelling of mouse liver nuclei with [gamma-32P]ATP in vitro, 10-20% of the radioactivity incorporated into the saline-soluble nuclear and HAP2 chromatin fractions was located in a low-molecular-weight component (component 10) with pI near 4.5 in urea. By using combinations of ion-exchange chromatography, preparative thin-layer isoelectric focusing and gel filtration, this component was isolated from both nuclear fractions. Recovery from the saline-soluble fraction was poor under conditions that allow endogenous phosphatases to be active. Component 10 was shown to be a phosphoprotein on the basis of enzyme-digestion experiments and the detection of phosphoserine and phosphothreonine. The 32P radioactivity did not appear to be associated with phosphorylated basic amino acids. Its molecular weight was determined by gel chromatography and electrophoresis in sodium dodecyl sulphate/polyacrylamide gels as approx. 10000, and tryptic digestion of the reduced carboxymethylated protein in urea yielded two 32P-labelled peptides. It has not been possible as yet to assign a function to component 10, though its similarity to other low-molecular-weight acidic proteins is discussed.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BULL H. B., BREESE K., FERGUSON G. L., SWENSON C. A. THE PH OF UREA SOLUTIONS. Arch Biochem Biophys. 1964 Feb;104:297–304. doi: 10.1016/s0003-9861(64)80017-5. [DOI] [PubMed] [Google Scholar]
- Barrett T., Maryanka D., Hamlyn P. H., Gould H. J. Nonhistone proteins control gene expression in reconstituted chromatin. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5057–5061. doi: 10.1073/pnas.71.12.5057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennick A. Chemical and physical characteristics of a phosphoprotein from human parotid saliva. Biochem J. 1975 Mar;145(3):557–567. doi: 10.1042/bj1450557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blüthmann H. Specific binding of a nonhistone chromosomal protein from lymphocyte to DNA. Eur J Biochem. 1976 Nov 1;70(1):233–240. doi: 10.1111/j.1432-1033.1976.tb10974.x. [DOI] [PubMed] [Google Scholar]
- Bryce C. F., Crichton R. R. Gel filtration of proteins and peptides in the presence of 6M guanidine hydrochloride. J Chromatogr. 1971 Dec 23;63(2):267–280. doi: 10.1016/s0021-9673(01)85639-9. [DOI] [PubMed] [Google Scholar]
- Chen C. C., Smith D. L., Bruegger B. B., Halpern R. M., Smith R. A. Occurrence and distribution of acid-labile histone phosphates in regenerating rat liver. Biochemistry. 1974 Aug 27;13(18):3785–3789. doi: 10.1021/bi00715a026. [DOI] [PubMed] [Google Scholar]
- Childers S. R., Siegel F. L. Calcium-binding proteins in electroplax and skeletal muscle. Comparison of the parvalbumin and phosphodiesterase activator protein of Electrophorus electricus. Biochim Biophys Acta. 1976 Aug 9;439(2):316–325. doi: 10.1016/0005-2795(76)90067-2. [DOI] [PubMed] [Google Scholar]
- Chiu J. F., Tsai Y. H., Sakuma K., Hnilica L. S. Regulation of in vitro mRNA transcription by a fraction of chromosomal proteins. J Biol Chem. 1975 Dec 25;250(24):9431–9433. [PubMed] [Google Scholar]
- Comings D. E., Harris D. C. Nuclear proteins. II. Similarity of nonhistone proteins in nuclear sap and chromatin, and essential absence of contractile proteins from mouse liver nuclei. J Cell Biol. 1976 Aug;70(2 Pt 1):440–452. doi: 10.1083/jcb.70.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Detoma F., Westley J. Active site peptides of rhodanese. Biochim Biophys Acta. 1970 Apr 28;207(1):144–149. doi: 10.1016/0005-2795(70)90145-5. [DOI] [PubMed] [Google Scholar]
- Dowd F. J., Jr, Pitts B. J., Schwartz A. Phosphorylation of a low molecular weight polypeptide in beef heart Na plus, K plus-ATPase preparations. Arch Biochem Biophys. 1976 Jul;175(1):321–331. doi: 10.1016/0003-9861(76)90514-2. [DOI] [PubMed] [Google Scholar]
- Elgin S. C., Bonner J. Limited heterogeneity of the major nonhistone chromosomal proteins. Biochemistry. 1970 Oct 27;9(22):4440–4447. doi: 10.1021/bi00824a027. [DOI] [PubMed] [Google Scholar]
- Elgin S. C., Bonner J. Partial fractionation and chemical characterization of the major nonhistone chromosomal proteins. Biochemistry. 1972 Feb 29;11(5):772–781. doi: 10.1021/bi00755a015. [DOI] [PubMed] [Google Scholar]
- Gaetjens E. Isolation of a 32P-labeled polypeptide of low molecular weight from phosphorylated human erythrocyte membranes. Biochemistry. 1976 Jan 13;15(1):40–45. doi: 10.1021/bi00646a007. [DOI] [PubMed] [Google Scholar]
- Goldknopf I. L., Taylor C. W., Baum R. M., Yeoman L. C., Olson M. O., Prestayko A. W., Busch H. Isolation and characterization of protein A24, a "histone-like" non-histone chromosomal protein. J Biol Chem. 1975 Sep 25;250(18):7182–7187. [PubMed] [Google Scholar]
- Goldstein G., Scheid M., Hammerling U., Schlesinger D. H., Niall H. D., Boyse E. A. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc Natl Acad Sci U S A. 1975 Jan;72(1):11–15. doi: 10.1073/pnas.72.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodwin G. H., Nicolas R. H., Johns E. W. An improved large scale fractionation of high mobility group non-histone chromatin proteins. Biochim Biophys Acta. 1975 Oct 20;405(2):280–291. doi: 10.1016/0005-2795(75)90094-x. [DOI] [PubMed] [Google Scholar]
- Grummt I., Grummt F. Studies on the phosphorylation of nucleolar proteins. Comparison of the phosphorylation patterns of nuclear and nucleolar proteins labeled in vivo and in vitro. FEBS Lett. 1974 Feb 15;39(2):129–132. doi: 10.1016/0014-5793(74)80034-7. [DOI] [PubMed] [Google Scholar]
- Huang W. Y., Cohn D. V., Hamilton J. W., Fullmer C., Wasserman R. H. Calcium-binding protein of bovine intestine. The complete amino acid sequence. J Biol Chem. 1975 Oct 10;250(19):7647–7655. [PubMed] [Google Scholar]
- Josephson R. V., Maheswaran S. K., Morr C. V., Jenness R., Lindorfer R. K. Effect of urea on pI's of ampholytes and casein in isoelectric focusing. Anal Biochem. 1971 Apr;40(2):476–482. doi: 10.1016/0003-2697(71)90408-8. [DOI] [PubMed] [Google Scholar]
- Kleinsmith L. J., Stein J., Stein G. Dephosphorylation of nonhistone proteins specifically alters the pattern of gene transcription in reconstituted chromatin. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1174–1178. doi: 10.1073/pnas.73.4.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knecht M. E., Busch H. Isolation of an electrophoretically homogeneous nonhistone nucleolar protein. Life Sci II. 1971 Nov 22;10(22):1297–1309. doi: 10.1016/0024-3205(71)90237-2. [DOI] [PubMed] [Google Scholar]
- Kostraba N. C., Wang T. Y. Inhibition of transcription in vitro by a non-histone protein isolated from Ehrlich ascites tumor chromatin. J Biol Chem. 1975 Dec 10;250(23):8938–8942. [PubMed] [Google Scholar]
- Liew C. C., Suria D., Gornall A. G. Effects of aldosterone on acetylation and phosphorylation of chromosomal proteins. Endocrinology. 1973 Nov;93(5):1025–1034. doi: 10.1210/endo-93-5-1025. [DOI] [PubMed] [Google Scholar]
- Lin S., Riggs A. D. The general affinity of lac repressor for E. coli DNA: implications for gene regulation in procaryotes and eucaryotes. Cell. 1975 Feb;4(2):107–111. doi: 10.1016/0092-8674(75)90116-6. [DOI] [PubMed] [Google Scholar]
- Lin Y. M., Liu Y. P., Cheung W. Y. Cyclic 3':5'-nucleotide phosphodiesterase. Purification, characterization, and active form of the protein activator from bovine brain. J Biol Chem. 1974 Aug 10;249(15):4943–4954. [PubMed] [Google Scholar]
- MacGillivray A. J., Cameron A., Krauze R. J., Rickwood D., Paul J. The non-histone proteins of chromatin, their isolation and composition in a number of tissues. Biochim Biophys Acta. 1972 Aug 25;277(2):384–402. [PubMed] [Google Scholar]
- MacGillivray A. J., Rickwood D. The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. Eur J Biochem. 1974 Jan 3;41(1):181–190. doi: 10.1111/j.1432-1033.1974.tb03258.x. [DOI] [PubMed] [Google Scholar]
- Marcus F., Morrison J. F. The preparation of phosphoarginine: a comparative study. Biochem J. 1964 Aug;92(2):429–435. doi: 10.1042/bj0920429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park W. D., Stein J. L., Stein G. S. Activation of in vitro histone gene transcription from Hela S3 chromatin by S-phase nonhistone chromosomal proteins. Biochemistry. 1976 Jul 27;15(15):3296–3230. doi: 10.1021/bi00660a020. [DOI] [PubMed] [Google Scholar]
- Patel N. T., Holoubek V. Characterization of low molecular weight nonhistone chromosomal protein from dog liver. FEBS Lett. 1974 Sep 15;46(1):154–157. doi: 10.1016/0014-5793(74)80357-1. [DOI] [PubMed] [Google Scholar]
- Pumo D. E., Stein G. S., Kleinsmith L. J. Stimulated phosphorylation of non-histone phosphoproteins in SV-40 transformed WI-38 human diploid fibroblasts. Biochim Biophys Acta. 1975 Aug 6;402(1):125–130. doi: 10.1016/0005-2787(75)90376-7. [DOI] [PubMed] [Google Scholar]
- Radola B. J. Isoelectric focusing in layers of granulated gels. I. Thin-layer isoelectric focusing of proteins. Biochim Biophys Acta. 1973 Feb 21;295(2):412–428. doi: 10.1016/0005-2795(73)90037-8. [DOI] [PubMed] [Google Scholar]
- Rickwood D., MacGillivray A. J. Improved techniques for the fractionation of non-histone proteins of chromatin on hydroxyapatite. Eur J Biochem. 1975 Feb 21;51(2):593–601. doi: 10.1111/j.1432-1033.1975.tb03961.x. [DOI] [PubMed] [Google Scholar]
- Rickwood D., Riches P. G., Maggillivray A. J. Studies of the in vitro phosphorylation of chromatin non-histone proteins in isolated nuclei. Biochim Biophys Acta. 1973 Feb 23;299(1):162–171. doi: 10.1016/0005-2787(73)90408-5. [DOI] [PubMed] [Google Scholar]
- Rosemond H., Moss B. Phosphoprotein component of vaccinia virions. J Virol. 1973 Jun;11(6):961–970. doi: 10.1128/jvi.11.6.961-970.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
- Schiltz E., Sekeris C. E. Enzymatic phosphorylation of nuclear proteins by (gamma-32P)ATP in isolated rat liver nuclei. Hoppe Seylers Z Physiol Chem. 1969 Mar;350(3):317–328. doi: 10.1515/bchm2.1969.350.1.317. [DOI] [PubMed] [Google Scholar]
- Schlesinger D. H., Goldstein G., Niall H. D. The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry. 1975 May 20;14(10):2214–2218. doi: 10.1021/bi00681a026. [DOI] [PubMed] [Google Scholar]
- Sokol F., Clark H. F. Phosphoproteins, structural components of rhabdoviruses. Virology. 1973 Mar;52(1):246–263. doi: 10.1016/0042-6822(73)90413-3. [DOI] [PubMed] [Google Scholar]
- Stein J. L., Reed K., Stein G. S. Effect of histones and nonhistone chromosomal proteins on the transcription of histone genes from HeLaS3 cell DNA. Biochemistry. 1976 Jul 27;15(15):3291–3295. doi: 10.1021/bi00660a019. [DOI] [PubMed] [Google Scholar]
- Stevens F. C., Walsh M., Ho H. C., Teo T. S., Wang J. H. Comparison of calcium-binding proteins. Bovine heart and brain protein activators of cyclic nucleotide phosphodiesterase and rabbit skeletal muscle troponin C. J Biol Chem. 1976 Aug 10;251(15):4495–4500. [PubMed] [Google Scholar]
- Thompson J. A., Stein J. L., Kleinsmith L. J., Stein G. S. Activation of histone gene transcription by nonhistone chromosomal phosphoproteins. Science. 1976 Oct 22;194(4263):428–431. doi: 10.1126/science.982025. [DOI] [PubMed] [Google Scholar]
- Tsai S. Y., Harris S. E., Tsai M. J., O'Malley B. W. Effects of estrogen on gene expression in chick oviduct. The role of chromatin proteins in regulating transcription of the ovalbumin gene. J Biol Chem. 1976 Aug 10;251(15):4713–4721. [PubMed] [Google Scholar]
- Tsiapalis C. M. Chemical modification of DNA polymerase phosphoprotein from avian myeloblastosis virus. Nature. 1977 Mar 3;266(5597):27–31. doi: 10.1038/266027a0. [DOI] [PubMed] [Google Scholar]
- Ui N. Isoelectric points and conformation of proteins. I. Effect of urea on the behavior of some proteins in isoelectric focusing. Biochim Biophys Acta. 1971 Mar 23;229(3):567–581. [PubMed] [Google Scholar]
- Wolff D. J., Brostrom C. O. Calcium-binding phosphoprotein from pig brain: identification as a calcium-dependent regulator of brain cyclic nucleotide phosphodiesterase. Arch Biochem Biophys. 1974 Jul;163(1):349–358. doi: 10.1016/0003-9861(74)90486-x. [DOI] [PubMed] [Google Scholar]
- Wu F. C., Elgin S. C., Hood L. E. Nonhistone chromosomal proteins of rat tissues. A comparative study by gel electrophoresis. Biochemistry. 1973 Jul 17;12(15):2792–2797. doi: 10.1021/bi00739a003. [DOI] [PubMed] [Google Scholar]
- Wu F. C., Elgin S. C., Hood L. E. The nonhistone chromosomal proteins of vertebrate liver and kidney: a comparative study by gel electrophoresis. J Mol Evol. 1975 Jul 11;5(2):87–101. doi: 10.1007/BF01732514. [DOI] [PubMed] [Google Scholar]
- Wålinder O. Identification of a phosphate-incorporating protein from bovine liver as nucleoside diphosphate kinase and isolation of 1-32P-phosphohistidine, 3-32P-phosphohistidine, and N-epsilon-32P-phospholysine from erythrocytic nucleoside diphosphate kinase, incubated with adenosine triphosphate-32P. J Biol Chem. 1968 Jul 25;243(14):3947–3952. [PubMed] [Google Scholar]
- Yeoman L. C., Taylor C. W., Jordan J. J., Busch H. Differences in chromatin proteins of growing and non-growing tissues. Exp Cell Res. 1975 Mar 1;91(1):207–215. doi: 10.1016/0014-4827(75)90159-7. [DOI] [PubMed] [Google Scholar]
- Zetterqvist O., Engström L. Isolation of N-e-[32P]phosphoryl-lysine from rat-liver cell sap after incubation with [32P]adenosine triphosphate. Biochim Biophys Acta. 1967 Aug 29;141(3):523–532. doi: 10.1016/0304-4165(67)90181-x. [DOI] [PubMed] [Google Scholar]