Skip to main content
Immunology logoLink to Immunology
. 1995 Jun;85(2):228–235.

Germ-line human epsilon heavy chain gene RNA transcripts utilize the full range of alternative 3' splicing seen in productive epsilon mRNA.

K Zhang 1, D Diaz-Sanchez 1, A Saxon 1
PMCID: PMC1383885  PMID: 7642211

Abstract

An early step in immunoglobulin isotype switching involves the initiation of active transcription of downstream heavy chain loci while they are still in germ-line configuration. This results in the production of 'sterile' germ-line RNA transcripts that do not contain VDJ sequences, the role of which in isotype switching is under intense scrutiny. We investigated whether such human epsilon germ-line transcripts employ the full complement of complex alternative 3' RNA splicing, splicing we have recently reported occurring with productive epsilon mRNA transcripts. Using a reverse transcriptase polymerase chain reaction (RT-PCR) strategy, in which the 5' primer was located in the I region of the epsilon gene, a region expressed in germ-line but not productive (VDJ containing) epsilon transcripts, we showed that the full range of alternative 3' epsilon splices occur with germ-line transcripts. These results demonstrate that epsilon 3' splicing events are independent of 5' isotype DNA switching. Additionally, we showed that, just as with mature epsilon mRNA, the relative production of the various epsilon germ-line mRNA isoforms was responsive to modulation by stimuli such as interleukin-10 (IL-10). Thus B cells, when stimulated to produce epsilon germ-line transcripts, generate a family of germ-line mRNA that differ not only in their initiation sites but, more importantly, also differ in their 3' sequences, sequences that could be important in regulation of the parent gene itself. Furthermore, by discontinuous or trans-splicing, cells could utilize these various epsilon germ-line transcripts to produce the full range of mature IgE proteins prior to undergoing deletional recombination of isotype switching.

Full text

PDF
228

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bottaro A., Lansford R., Xu L., Zhang J., Rothman P., Alt F. W. S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J. 1994 Feb 1;13(3):665–674. doi: 10.1002/j.1460-2075.1994.tb06305.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Diaz-Sanchez D., Dotson A. R., Takenaka H., Saxon A. Diesel exhaust particles induce local IgE production in vivo and alter the pattern of IgE messenger RNA isoforms. J Clin Invest. 1994 Oct;94(4):1417–1425. doi: 10.1172/JCI117478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Esser C., Radbruch A. Immunoglobulin class switching: molecular and cellular analysis. Annu Rev Immunol. 1990;8:717–735. doi: 10.1146/annurev.iy.08.040190.003441. [DOI] [PubMed] [Google Scholar]
  4. Gaff C., Gerondakis S. RNA splicing generates alternate forms of germline immunoglobulin alpha heavy chain transcripts. Int Immunol. 1990;2(12):1143–1148. doi: 10.1093/intimm/2.12.1143. [DOI] [PubMed] [Google Scholar]
  5. Gauchat J. F., Gascan H., de Waal Malefyt R., de Vries J. E. Regulation of germ-line epsilon transcription and induction of epsilon switching in cloned EBV-transformed and malignant human B cell lines by cytokines and CD4+ T cells. J Immunol. 1992 Apr 1;148(7):2291–2299. [PubMed] [Google Scholar]
  6. Gauchat J. F., Lebman D. A., Coffman R. L., Gascan H., de Vries J. E. Structure and expression of germline epsilon transcripts in human B cells induced by interleukin 4 to switch to IgE production. J Exp Med. 1990 Aug 1;172(2):463–473. doi: 10.1084/jem.172.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hellman L. Characterization of four novel epsilon chain mRNA and a comparative analysis of genes for immunoglobulin E in rodents and man. Eur J Immunol. 1993 Jan;23(1):159–167. doi: 10.1002/eji.1830230126. [DOI] [PubMed] [Google Scholar]
  8. Kitani A., Strober W. Regulation of C gamma subclass germ-line transcripts in human peripheral blood B cells. J Immunol. 1993 Oct 1;151(7):3478–3488. [PubMed] [Google Scholar]
  9. Lebman D. A., Nomura D. Y., Coffman R. L., Lee F. D. Molecular characterization of germ-line immunoglobulin A transcripts produced during transforming growth factor type beta-induced isotype switching. Proc Natl Acad Sci U S A. 1990 May;87(10):3962–3966. doi: 10.1073/pnas.87.10.3962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MacKenzie T., Dosch H. M. Clonal and molecular characteristics of the human IgE-committed B cell subset. J Exp Med. 1989 Feb 1;169(2):407–430. doi: 10.1084/jem.169.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Max E. E., Battey J., Ney R., Kirsch I. R., Leder P. Duplication and deletion in the human immunoglobulin epsilon genes. Cell. 1982 Jun;29(2):691–699. doi: 10.1016/0092-8674(82)90185-4. [DOI] [PubMed] [Google Scholar]
  12. Neale G. A., Kitchingman G. R. mRNA transcripts initiating within the human immunoglobulin mu heavy chain enhancer region contain a non-translatable exon and are extremely heterogeneous at the 5' end. Nucleic Acids Res. 1991 May 11;19(9):2427–2433. doi: 10.1093/nar/19.9.2427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nolan-Willard M., Berton M. T., Tucker P. Coexpression of mu and gamma 1 heavy chains can occur by a discontinuous transcription mechanism from the same unrearranged chromosome. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1234–1238. doi: 10.1073/pnas.89.4.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peng C., Davis F. M., Sun L. K., Liou R. S., Kim Y. W., Chang T. W. A new isoform of human membrane-bound IgE. J Immunol. 1992 Jan 1;148(1):129–136. [PubMed] [Google Scholar]
  15. Radcliffe G., Lin Y. C., Julius M., Marcu K. B., Stavnezer J. Structure of germ line immunoglobulin alpha heavy-chain RNA and its location on polysomes. Mol Cell Biol. 1990 Jan;10(1):382–386. doi: 10.1128/mcb.10.1.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rastinejad F., Blau H. M. Genetic complementation reveals a novel regulatory role for 3' untranslated regions in growth and differentiation. Cell. 1993 Mar 26;72(6):903–917. doi: 10.1016/0092-8674(93)90579-f. [DOI] [PubMed] [Google Scholar]
  17. Ravetch J. V., Siebenlist U., Korsmeyer S., Waldmann T., Leder P. Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell. 1981 Dec;27(3 Pt 2):583–591. doi: 10.1016/0092-8674(81)90400-1. [DOI] [PubMed] [Google Scholar]
  18. Rothman P., Chen Y. Y., Lutzker S., Li S. C., Stewart V., Coffman R., Alt F. W. Structure and expression of germ line immunoglobulin heavy-chain epsilon transcripts: interleukin-4 plus lipopolysaccharide-directed switching to C epsilon. Mol Cell Biol. 1990 Apr;10(4):1672–1679. doi: 10.1128/mcb.10.4.1672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Saxon A., Feldhaus J., Robins R. A. Single step separation of human T and B cells using AET treated srbc rosettes. J Immunol Methods. 1976;12(3-4):285–288. doi: 10.1016/0022-1759(76)90050-8. [DOI] [PubMed] [Google Scholar]
  20. Shimizu A., Honjo T. Synthesis and regulation of trans-mRNA encoding the immunoglobulin epsilon heavy chain. FASEB J. 1993 Jan;7(1):149–154. doi: 10.1096/fasebj.7.1.7916698. [DOI] [PubMed] [Google Scholar]
  21. Shimizu A., Nussenzweig M. C., Han H., Sanchez M., Honjo T. Trans-splicing as a possible molecular mechanism for the multiple isotype expression of the immunoglobulin gene. J Exp Med. 1991 Jun 1;173(6):1385–1393. doi: 10.1084/jem.173.6.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shimizu A., Nussenzweig M. C., Mizuta T. R., Leder P., Honjo T. Immunoglobulin double-isotype expression by trans-mRNA in a human immunoglobulin transgenic mouse. Proc Natl Acad Sci U S A. 1989 Oct;86(20):8020–8023. doi: 10.1073/pnas.86.20.8020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stavnezer J., Radcliffe G., Lin Y. C., Nietupski J., Berggren L., Sitia R., Severinson E. Immunoglobulin heavy-chain switching may be directed by prior induction of transcripts from constant-region genes. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7704–7708. doi: 10.1073/pnas.85.20.7704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xu L., Gorham B., Li S. C., Bottaro A., Alt F. W., Rothman P. Replacement of germ-line epsilon promoter by gene targeting alters control of immunoglobulin heavy chain class switching. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3705–3709. doi: 10.1073/pnas.90.8.3705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yaoita Y., Kumagai Y., Okumura K., Honjo T. Expression of lymphocyte surface IgE does not require switch recombination. Nature. 1982 Jun 24;297(5868):697–699. doi: 10.1038/297697a0. [DOI] [PubMed] [Google Scholar]
  26. Zhang J., Bottaro A., Li S., Stewart V., Alt F. W. A selective defect in IgG2b switching as a result of targeted mutation of the I gamma 2b promoter and exon. EMBO J. 1993 Sep;12(9):3529–3537. doi: 10.1002/j.1460-2075.1993.tb06027.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Zhang K., Clark E. A., Saxon A. CD40 stimulation provides an IFN-gamma-independent and IL-4-dependent differentiation signal directly to human B cells for IgE production. J Immunol. 1991 Mar 15;146(6):1836–1842. [PubMed] [Google Scholar]
  28. Zhang K., Max E. E., Cheah H. K., Saxon A. Complex alternative RNA splicing of epsilon-immunoglobulin transcripts produces mRNAs encoding four potential secreted protein isoforms. J Biol Chem. 1994 Jan 7;269(1):456–462. [PubMed] [Google Scholar]
  29. Zhang K., Saxon A., Max E. E. Two unusual forms of human immunoglobulin E encoded by alternative RNA splicing of epsilon heavy chain membrane exons. J Exp Med. 1992 Jul 1;176(1):233–243. doi: 10.1084/jem.176.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Immunology are provided here courtesy of British Society for Immunology

RESOURCES