Abstract
Calcium was detected by X-ray microanalysis in the mitochondria of electrically stimulated nerve endings. The phenomenon described here offers a simple means for identifying the stimulated nerve endings in the electron microscope and appears to be a promising new method for following spontaneous and drug-stimulated translocation of calcium in relation to the regulation of neurotransmitter release.
Full Text
The Full Text of this article is available as a PDF (828.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blaustein M. P. Preganglionic stimulation increases calcium uptake by sympathetic ganglia. Science. 1971 Apr 23;172(3981):391–393. doi: 10.1126/science.172.3981.391. [DOI] [PubMed] [Google Scholar]
- Christensen A. K. Frozen thin sections of fresh tissue for electron microscopy, with a description of pancreas and liver. J Cell Biol. 1971 Dec;51(3):772–804. doi: 10.1083/jcb.51.3.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J., Katz B., Miledi R. Structural and functional changes of frog neuromuscular junctions in high calcium solutions. Proc R Soc Lond B Biol Sci. 1971 Sep 28;178(1053):407–415. doi: 10.1098/rspb.1971.0072. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
- Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lieberman E. M., Palmer R. F., Collins G. H. Calcium ion uptake by crustacean peripheral nerve subcellular particles. Exp Cell Res. 1967 May;46(2):412–418. doi: 10.1016/0014-4827(67)90077-8. [DOI] [PubMed] [Google Scholar]
- Llinás R., Blinks J. R., Nicholson C. Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin. Science. 1972 Jun 9;176(4039):1127–1129. doi: 10.1126/science.176.4039.1127. [DOI] [PubMed] [Google Scholar]
- Oschman J. L., Wall B. J. Calcium binding to intestinal membranes. J Cell Biol. 1972 Oct;55(1):58–73. doi: 10.1083/jcb.55.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pysh J. J., Wiley R. G. Morphologic alterations of synapses in electrically stimulated superior cervical ganglia of the cat. Science. 1972 Apr 14;176(4031):191–193. doi: 10.1126/science.176.4031.191. [DOI] [PubMed] [Google Scholar]
- Párducz A., Joó F., Fehér O. The role of choline in maintaining the fine structure of nerve terminals in the superior cervical ganglion of cat. J Neural Transm. 1974;Suppl 11(0):299–314. [PubMed] [Google Scholar]
- Sampson H. W., Dill R. E., Matthews J. L., Martin J. H. An ultrastructural investigation of calcium-dependent granules in the rat neuropil. Brain Res. 1970 Aug 27;22(2):157–162. doi: 10.1016/0006-8993(70)90001-6. [DOI] [PubMed] [Google Scholar]
- WEISS J. M. Mitochondrial changes induced by potassium and sodium in the duodenal absorptive cell as studied with the electron microscope. J Exp Med. 1955 Dec 1;102(6):783–788. doi: 10.1084/jem.102.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winborn W. B., Seelig L. L., Jr Paraformaldehyde and s-collidine--a fixative for preserving large blocks of tissue for electron microscopy. Tex Rep Biol Med. 1970 Fall;28(3):347–361. [PubMed] [Google Scholar]
- Yates R. D., Yates J. C. The occurrence of intramitochondrial granules in nerve cells. Z Zellforsch Mikrosk Anat. 1968;92(3):388–393. doi: 10.1007/BF00455595. [DOI] [PubMed] [Google Scholar]
