Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 May 1;69(2):513–517. doi: 10.1083/jcb.69.2.513

Visualization of stimulated nerve endings by preferential calcium accumulation of mitochondria

PMCID: PMC2109685  PMID: 770484

Abstract

Calcium was detected by X-ray microanalysis in the mitochondria of electrically stimulated nerve endings. The phenomenon described here offers a simple means for identifying the stimulated nerve endings in the electron microscope and appears to be a promising new method for following spontaneous and drug-stimulated translocation of calcium in relation to the regulation of neurotransmitter release.

Full Text

The Full Text of this article is available as a PDF (828.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blaustein M. P. Preganglionic stimulation increases calcium uptake by sympathetic ganglia. Science. 1971 Apr 23;172(3981):391–393. doi: 10.1126/science.172.3981.391. [DOI] [PubMed] [Google Scholar]
  2. Christensen A. K. Frozen thin sections of fresh tissue for electron microscopy, with a description of pancreas and liver. J Cell Biol. 1971 Dec;51(3):772–804. doi: 10.1083/jcb.51.3.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heuser J., Katz B., Miledi R. Structural and functional changes of frog neuromuscular junctions in high calcium solutions. Proc R Soc Lond B Biol Sci. 1971 Sep 28;178(1053):407–415. doi: 10.1098/rspb.1971.0072. [DOI] [PubMed] [Google Scholar]
  5. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  6. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lieberman E. M., Palmer R. F., Collins G. H. Calcium ion uptake by crustacean peripheral nerve subcellular particles. Exp Cell Res. 1967 May;46(2):412–418. doi: 10.1016/0014-4827(67)90077-8. [DOI] [PubMed] [Google Scholar]
  8. Llinás R., Blinks J. R., Nicholson C. Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin. Science. 1972 Jun 9;176(4039):1127–1129. doi: 10.1126/science.176.4039.1127. [DOI] [PubMed] [Google Scholar]
  9. Oschman J. L., Wall B. J. Calcium binding to intestinal membranes. J Cell Biol. 1972 Oct;55(1):58–73. doi: 10.1083/jcb.55.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Pysh J. J., Wiley R. G. Morphologic alterations of synapses in electrically stimulated superior cervical ganglia of the cat. Science. 1972 Apr 14;176(4031):191–193. doi: 10.1126/science.176.4031.191. [DOI] [PubMed] [Google Scholar]
  11. Párducz A., Joó F., Fehér O. The role of choline in maintaining the fine structure of nerve terminals in the superior cervical ganglion of cat. J Neural Transm. 1974;Suppl 11(0):299–314. [PubMed] [Google Scholar]
  12. Sampson H. W., Dill R. E., Matthews J. L., Martin J. H. An ultrastructural investigation of calcium-dependent granules in the rat neuropil. Brain Res. 1970 Aug 27;22(2):157–162. doi: 10.1016/0006-8993(70)90001-6. [DOI] [PubMed] [Google Scholar]
  13. WEISS J. M. Mitochondrial changes induced by potassium and sodium in the duodenal absorptive cell as studied with the electron microscope. J Exp Med. 1955 Dec 1;102(6):783–788. doi: 10.1084/jem.102.6.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Winborn W. B., Seelig L. L., Jr Paraformaldehyde and s-collidine--a fixative for preserving large blocks of tissue for electron microscopy. Tex Rep Biol Med. 1970 Fall;28(3):347–361. [PubMed] [Google Scholar]
  15. Yates R. D., Yates J. C. The occurrence of intramitochondrial granules in nerve cells. Z Zellforsch Mikrosk Anat. 1968;92(3):388–393. doi: 10.1007/BF00455595. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES