Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1995 Feb;63(2):516–521. doi: 10.1128/iai.63.2.516-521.1995

Role of CD8 T cells in primary Chlamydia infection.

D M Magee 1, D M Williams 1, J G Smith 1, C A Bleicker 1, B G Grubbs 1, J Schachter 1, R G Rank 1
PMCID: PMC173025  PMID: 7822016

Abstract

The role of CD4 and CD8 T cells in primary Chlamydia trachomatis pneumonia was investigated by using in vivo depletion techniques to eliminate T-cell populations. Reduction of either CD4 T cells or CD8 T cells caused a significant increase in organism burden in the lungs, as measured by both quantitative culture and detection of chlamydial antigen on day 14 postinfection. Chlamydia-specific antibody levels in plasma or antigen-induced gamma interferon (IFN-gamma) production by spleen cells was dramatically reduced by depletion of CD4 cells. The reduction in IFN-gamma achieved by depletion of CD8 cells did not reach statistical significance. In the survival studies, depletion of CD4 cells led to a significant increase in mortality. Although there was a trend toward higher mortality, depletion of CD8 cells did not significantly increase mortality. The role of CD8 T cells in host defense was clarified in studies using beta 2-microglobulin-deficient (major histocompatibility class I antigen-deficient, C1D) mice which are defective in CD8 T-cell function. In this model, a significant increase in organism burden was seen during infection in C1D mice compared with that C57BL/6 controls and a significant increase in mortality was observed as well. However, surviving C1D mice were able to clear the infection by day 34. C1D mice had increased numbers of CD4 T cells in both the spleen and the lungs during infection compared with those of C57BL/6 controls. IFN-gamma in C57BL/6 mice was produced by both CD4 and CD8 cells. Thus, there is a protective role for both CD4 and CD8 cells in host defense against Chlamydia infection, but the former appear to be dominant.

Full Text

The Full Text of this article is available as a PDF (221.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apasov S. G., Sitkovsky M. V. Development and antigen specificity of CD8+ cytotoxic T lymphocytes in beta 2-microglobulin-negative, MHC class I-deficient mice in response to immunization with tumor cells. J Immunol. 1994 Mar 1;152(5):2087–2097. [PubMed] [Google Scholar]
  2. Buzoni-Gatel D., Guilloteau L., Bernard F., Bernard S., Chardès T., Rocca A. Protection against Chlamydia psittaci in mice conferred by Lyt-2+ T cells. Immunology. 1992 Oct;77(2):284–288. [PMC free article] [PubMed] [Google Scholar]
  3. Byrne G. I., Grubbs B., Marshall T. J., Schachter J., Williams D. M. Gamma interferon-mediated cytotoxicity related to murine Chlamydia trachomatis infection. Infect Immun. 1988 Aug;56(8):2023–2027. doi: 10.1128/iai.56.8.2023-2027.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Deepe G. S., Jr Role of CD8+ T cells in host resistance to systemic infection with Histoplasma capsulatum in mice. J Immunol. 1994 Apr 1;152(7):3491–3500. [PubMed] [Google Scholar]
  5. Denkers E. Y., Gazzinelli R. T., Martin D., Sher A. Emergence of NK1.1+ cells as effectors of IFN-gamma dependent immunity to Toxoplasma gondii in MHC class I-deficient mice. J Exp Med. 1993 Nov 1;178(5):1465–1472. doi: 10.1084/jem.178.5.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fiette L., Aubert C., Brahic M., Rossi C. P. Theiler's virus infection of beta 2-microglobulin-deficient mice. J Virol. 1993 Jan;67(1):589–592. doi: 10.1128/jvi.67.1.589-592.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gazzinelli R. T., Hakim F. T., Hieny S., Shearer G. M., Sher A. Synergistic role of CD4+ and CD8+ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol. 1991 Jan 1;146(1):286–292. [PubMed] [Google Scholar]
  8. Hill J. O., Harmsen A. G. Intrapulmonary growth and dissemination of an avirulent strain of Cryptococcus neoformans in mice depleted of CD4+ or CD8+ T cells. J Exp Med. 1991 Mar 1;173(3):755–758. doi: 10.1084/jem.173.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hiromatsu K., Yoshikai Y., Matsuzaki G., Ohga S., Muramori K., Matsumoto K., Bluestone J. A., Nomoto K. A protective role of gamma/delta T cells in primary infection with Listeria monocytogenes in mice. J Exp Med. 1992 Jan 1;175(1):49–56. doi: 10.1084/jem.175.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hou S., Doherty P. C., Zijlstra M., Jaenisch R., Katz J. M. Delayed clearance of Sendai virus in mice lacking class I MHC-restricted CD8+ T cells. J Immunol. 1992 Aug 15;149(4):1319–1325. [PubMed] [Google Scholar]
  11. Hou S., Fishman M., Murti K. G., Doherty P. C. Divergence between cytotoxic effector function and tumor necrosis factor alpha production for inflammatory CD4+ T cells from mice with Sendai virus pneumonia. J Virol. 1993 Oct;67(10):6299–6302. doi: 10.1128/jvi.67.10.6299-6302.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Howard L., Orenstein N. S., King N. W. Purification on renografin density gradients of Chlamydia trachomatis grown in the yolk sac of eggs. Appl Microbiol. 1974 Jan;27(1):102–106. doi: 10.1128/am.27.1.102-106.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Huffnagle G. B., Yates J. L., Lipscomb M. F. Immunity to a pulmonary Cryptococcus neoformans infection requires both CD4+ and CD8+ T cells. J Exp Med. 1991 Apr 1;173(4):793–800. doi: 10.1084/jem.173.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Igietseme J. U., Magee D. M., Williams D. M., Rank R. G. Role for CD8+ T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect Immun. 1994 Nov;62(11):5195–5197. doi: 10.1128/iai.62.11.5195-5197.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Igietseme J. U., Ramsey K. H., Magee D. M., Williams D. M., Kincy T. J., Rank R. G. Resolution of murine chlamydial genital infection by the adoptive transfer of a biovar-specific, Th1 lymphocyte clone. Reg Immunol. 1993 Nov-Dec;5(6):317–324. [PubMed] [Google Scholar]
  16. Kemeny D. M., Noble A., Holmes B. J., Diaz-Sanchez D. Immune regulation: a new role for the CD8+ T cell. Immunol Today. 1994 Mar;15(3):107–110. doi: 10.1016/0167-5699(94)90152-X. [DOI] [PubMed] [Google Scholar]
  17. Lamousé-Smith E., Clements V. K., Ostrand-Rosenberg S. Beta 2M-/- knockout mice contain low levels of CD8+ cytotoxic T lymphocyte that mediate specific tumor rejection. J Immunol. 1993 Dec 1;151(11):6283–6290. [PubMed] [Google Scholar]
  18. Landers D. V., Erlich K., Sung M., Schachter J. Role of L3T4-bearing T-cell populations in experimental murine chlamydial salpingitis. Infect Immun. 1991 Oct;59(10):3774–3777. doi: 10.1128/iai.59.10.3774-3777.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Locksley R. M., Reiner S. L., Hatam F., Littman D. R., Killeen N. Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science. 1993 Sep 10;261(5127):1448–1451. doi: 10.1126/science.8367726. [DOI] [PubMed] [Google Scholar]
  20. Magee D. M., Igietseme J. U., Smith J. G., Bleicker C. A., Grubbs B. G., Schachter J., Rank R. G., Williams D. M. Chlamydia trachomatis pneumonia in the severe combined immunodeficiency (SCID) mouse. Reg Immunol. 1993 Nov-Dec;5(6):305–311. [PubMed] [Google Scholar]
  21. Magee D. M., Williams D. M., Wing E. J., Bleicker C. A., Schachter J. Production of colony-stimulating factors during pneumonia caused by Chlamydia trachomatis. Infect Immun. 1991 Jul;59(7):2370–2375. doi: 10.1128/iai.59.7.2370-2375.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Magee D. M., Wing E. J. Cloned L3T4+ T lymphocytes protect mice against Listeria monocytogenes by secreting IFN-gamma. J Immunol. 1988 Nov 1;141(9):3203–3207. [PubMed] [Google Scholar]
  23. Muller D., Koller B. H., Whitton J. L., LaPan K. E., Brigman K. K., Frelinger J. A. LCMV-specific, class II-restricted cytotoxic T cells in beta 2-microglobulin-deficient mice. Science. 1992 Mar 20;255(5051):1576–1578. doi: 10.1126/science.1347959. [DOI] [PubMed] [Google Scholar]
  24. Overath P., Harbecke D. Course of Leishmania infection in beta 2-microglobulin-deficient mice. Immunol Lett. 1993 Jul;37(1):13–17. doi: 10.1016/0165-2478(93)90126-m. [DOI] [PubMed] [Google Scholar]
  25. Patton D. L., Halbert S. A., Kuo C. C., Wang S. P., Holmes K. K. Host response to primary Chlamydia trachomatis infection of the fallopian tube in pig-tailed monkeys. Fertil Steril. 1983 Dec;40(6):829–840. [PubMed] [Google Scholar]
  26. Pedrazzini T., Hug K., Louis J. A. Importance of L3T4+ and Lyt-2+ cells in the immunologic control of infection with Mycobacterium bovis strain bacillus Calmette-Guérin in mice. Assessment by elimination of T cell subsets in vivo. J Immunol. 1987 Sep 15;139(6):2032–2037. [PubMed] [Google Scholar]
  27. Podack E. R., Kupfer A. T-cell effector functions: mechanisms for delivery of cytotoxicity and help. Annu Rev Cell Biol. 1991;7:479–504. doi: 10.1146/annurev.cb.07.110191.002403. [DOI] [PubMed] [Google Scholar]
  28. Poston R. M., Kurlander R. J. Analysis of the time course of IFN-gamma mRNA and protein production during primary murine listeriosis. The immune phase of bacterial elimination is not temporally linked to IFN production in vivo. J Immunol. 1991 Jun 15;146(12):4333–4337. [PubMed] [Google Scholar]
  29. Ramsey K. H., Rank R. G. Resolution of chlamydial genital infection with antigen-specific T-lymphocyte lines. Infect Immun. 1991 Mar;59(3):925–931. doi: 10.1128/iai.59.3.925-931.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Roberts A. D., Ordway D. J., Orme I. M. Listeria monocytogenes infection in beta 2 microglobulin-deficient mice. Infect Immun. 1993 Mar;61(3):1113–1116. doi: 10.1128/iai.61.3.1113-1116.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sasaki T., Mieno M., Udono H., Yamaguchi K., Usui T., Hara K., Shiku H., Nakayama E. Roles of CD4+ and CD8+ cells, and the effect of administration of recombinant murine interferon gamma in listerial infection. J Exp Med. 1990 Apr 1;171(4):1141–1154. doi: 10.1084/jem.171.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schachter J., Moncada J., Dawson C. R., Sheppard J., Courtright P., Said M. E., Zaki S., Hafez S. F., Lorincz A. Nonculture methods for diagnosing chlamydial infection in patients with trachoma: a clue to the pathogenesis of the disease? J Infect Dis. 1988 Dec;158(6):1347–1352. doi: 10.1093/infdis/158.6.1347. [DOI] [PubMed] [Google Scholar]
  33. Tarleton R. L., Koller B. H., Latour A., Postan M. Susceptibility of beta 2-microglobulin-deficient mice to Trypanosoma cruzi infection. Nature. 1992 Mar 26;356(6367):338–340. doi: 10.1038/356338a0. [DOI] [PubMed] [Google Scholar]
  34. Thejls H., Gnarpe J., Lundkvist O., Heimer G., Larsson G., Victor A. Diagnosis and prevalence of persistent chlamydia infection in infertile women: tissue culture, direct antigen detection, and serology. Fertil Steril. 1991 Feb;55(2):304–310. [PubMed] [Google Scholar]
  35. Williams D. M., Byrne G. I., Grubbs B., Marshal T. J., Schachter J. Role in vivo for gamma interferon in control of pneumonia caused by Chlamydia trachomatis in mice. Infect Immun. 1988 Nov;56(11):3004–3006. doi: 10.1128/iai.56.11.3004-3006.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Williams D. M., Magee D. M., Bonewald L. F., Smith J. G., Bleicker C. A., Byrne G. I., Schachter J. A role in vivo for tumor necrosis factor alpha in host defense against Chlamydia trachomatis. Infect Immun. 1990 Jun;58(6):1572–1576. doi: 10.1128/iai.58.6.1572-1576.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Williams D. M., Schachter J., Coalson J. J., Grubbs B. Cellular immunity to the mouse pneumonitis agent. J Infect Dis. 1984 Apr;149(4):630–639. doi: 10.1093/infdis/149.4.630. [DOI] [PubMed] [Google Scholar]
  38. Williams D. M., Schachter J., Drutz D. J., Sumaya C. V. Pneumonia due to Chlamydia trachomatis in the immunocompromised (nude) mouse. J Infect Dis. 1981 Feb;143(2):238–241. doi: 10.1093/infdis/143.2.238. [DOI] [PubMed] [Google Scholar]
  39. Williams D. M., Schachter J., Grubbs B. Role of natural killer cells in infection with the mouse pneumonitis agent (murine Chlamydia trachomatis). Infect Immun. 1987 Jan;55(1):223–226. doi: 10.1128/iai.55.1.223-226.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Williams D. M., Schachter J. Role of cell-mediated immunity in chlamydial infection: implications for ocular immunity. Rev Infect Dis. 1985 Nov-Dec;7(6):754–759. doi: 10.1093/clinids/7.6.754. [DOI] [PubMed] [Google Scholar]
  41. Williams D. M., Schachter J., Weiner M. H., Grubbs B. Antibody in host defense against mouse pneumonitis agent (murine Chlamydia trachomatis). Infect Immun. 1984 Sep;45(3):674–678. doi: 10.1128/iai.45.3.674-678.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Zhong G. M., Peterson E. M., Czarniecki C. W., Schreiber R. D., de la Maza L. M. Role of endogenous gamma interferon in host defense against Chlamydia trachomatis infections. Infect Immun. 1989 Jan;57(1):152–157. doi: 10.1128/iai.57.1.152-157.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van der Heyde H. C., Manning D. D., Roopenian D. C., Weidanz W. P. Resolution of blood-stage malarial infections in CD8+ cell-deficient beta 2-m0/0 mice. J Immunol. 1993 Sep 15;151(6):3187–3191. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES