Skip to main content
Gut logoLink to Gut
. 1994 Nov;35(11):1659–1664. doi: 10.1136/gut.35.11.1659

Specific interaction of pancreatic elastase and leucocytes to produce oxygen radicals and its implication in pancreatitis.

N Tsuji 1, N Watanabe 1, T Okamoto 1, Y Niitsu 1
PMCID: PMC1375632  PMID: 7828993

Abstract

Many previous reports using experimental animal models of pancreatitis have suggested that oxygen free radicals play an important part in initiation and development of pancreatitis. Infiltration of inflammatory cells--that is, neutrophils, lymphocytes, and monocytes--has been seen in damaged pancreatic glands of animal models and patients with pancreatitis. As neutrophils are known to be the highest producer of oxygen free radicals among these inflammatory cells, it seems plausible that oxygen free radicals produced by neutrophils have some pathoaetiological meaning in pancreatitis. This study measured the superoxide production by neutrophils obtained from patients with acute and chronic pancreatitis and then examined the effects of pancreatic enzymes on superoxide production. Patients showed significantly higher superoxide production by 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) stimulated neutrophils than healthy controls. Among the three pancreatic enzymes, amylase, trypsin, and elastase, elastase was the only one that increased the superoxide production by PMA stimulated neutrophils, by an increment of 1.5-fold. It also increased the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase prepared from PMA stimulated neutrophils by a factor of 2.1. High affinity and low affinity binding sites for elastase on neutrophils were identified. These results suggest that elastase plays a part in the development of pancreatitis by enhancing superoxide production of neutrophils.

Full text

PDF
1659

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler G., Hupp T., Kern H. F. Course and spontaneous regression of acute pancreatitis in the rat. Virchows Arch A Pathol Anat Histol. 1979 May 14;382(1):31–47. doi: 10.1007/BF01102739. [DOI] [PubMed] [Google Scholar]
  2. Aho H. J., Nevalainen T. J., Havia V. T., Heinonen R. J., Aho A. J. Human acute pancreatitis: a light and electron microscopic study. Acta Pathol Microbiol Immunol Scand A. 1982 Sep;90(5):367–373. [PubMed] [Google Scholar]
  3. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dewald B., Baggiolini M., Curnutte J. T., Babior B. M. Subcellular localization of the superoxide-forming enzyme in human neutrophils. J Clin Invest. 1979 Jan;63(1):21–29. doi: 10.1172/JCI109273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Exley A. R., Leese T., Holliday M. P., Swann R. A., Cohen J. Endotoxaemia and serum tumour necrosis factor as prognostic markers in severe acute pancreatitis. Gut. 1992 Aug;33(8):1126–1128. doi: 10.1136/gut.33.8.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geokas M. C., Murphy R., McKenna R. D. The role of elastase in acute pancreatitis. I. Intrapancreatic elastolytic activity in bile-induced acute pancreatitis in dogs. Arch Pathol. 1968 Aug;86(2):117–126. [PubMed] [Google Scholar]
  7. Geokas M. C. The role of elastase in acute pancreatitis. II. Intrapancreatic elastolytic activity in trypsin-induced acute pancreatitis in dogs. Arch Pathol. 1968 Aug;86(2):127–134. [PubMed] [Google Scholar]
  8. Gough D. B., Boyle B., Joyce W. P., Delaney C. P., McGeeney K. F., Gorey T. F., Fitzpatrick J. M. Free radical inhibition and serial chemiluminescence in evolving experimental pancreatitis. Br J Surg. 1990 Nov;77(11):1256–1259. doi: 10.1002/bjs.1800771119. [DOI] [PubMed] [Google Scholar]
  9. Hanasaki K., Arita H. Characterization of a high affinity binding site for pancreatic-type phospholipase A2 in the rat. Its cellular and tissue distribution. J Biol Chem. 1992 Mar 25;267(9):6414–6420. [PubMed] [Google Scholar]
  10. Hanasaki K., Arita H. Purification and characterization of a high-affinity binding protein for pancreatic-type phospholipase A2. Biochim Biophys Acta. 1992 Aug 19;1127(3):233–241. doi: 10.1016/0005-2760(92)90226-l. [DOI] [PubMed] [Google Scholar]
  11. Jancar S., De Giaccobi G., Mariano M., Mencia-Huerta J. M., Sirois P., Braquet P. Immune complex induced pancreatitis: effect of BN 52021, a selective antagonist of platelet-activating factor. Prostaglandins. 1988 May;35(5):757–770. doi: 10.1016/0090-6980(88)90148-7. [DOI] [PubMed] [Google Scholar]
  12. Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kakinuma K., Kaneda M., Chiba T., Ohnishi T. Electron spin resonance studies on a flavoprotein in neutrophil plasma membranes. Redox potentials of the flavin and its participation in NADPH oxidase. J Biol Chem. 1986 Jul 15;261(20):9426–9432. [PubMed] [Google Scholar]
  14. Kanemasa T., Arimura A., Kishino J., Ohtani M., Arita H. Contraction of guinea pig lung parenchyma by pancreatic type phospholipase A2 via its specific binding site. FEBS Lett. 1992 Jun 1;303(2-3):217–220. doi: 10.1016/0014-5793(92)80523-j. [DOI] [PubMed] [Google Scholar]
  15. Kitagawa S., Takaku F., Sakamoto S. A comparison of the superoxide-releasing response in human polymorphonuclear leukocytes and monocytes. J Immunol. 1980 Jul;125(1):359–364. [PubMed] [Google Scholar]
  16. Kusner D. J., King C. H. Protease-modulation of neutrophil superoxide response. J Immunol. 1989 Sep 1;143(5):1696–1702. [PubMed] [Google Scholar]
  17. Nonaka A., Manabe T., Kyogoku T., Tamura K., Tobe T. Changes in lipid peroxide and oxygen radical scavengers in cerulein-induced acute pancreatitis. Imbalance between the offense and defense systems. Digestion. 1990;47(3):130–137. doi: 10.1159/000200487. [DOI] [PubMed] [Google Scholar]
  18. Nonaka A., Manabe T., Tamura K., Asano N., Imanishi K., Tobe T. Changes of xanthine oxidase, lipid peroxide and superoxide dismutase in mouse acute pancreatitis. Digestion. 1989;43(1-2):41–46. doi: 10.1159/000199859. [DOI] [PubMed] [Google Scholar]
  19. Okumura N., Sakakibara A., Hayakawa T., Noda A. Pancreatic endocrine function in experimental pancreatolithiasis in dogs. Am J Gastroenterol. 1982 Jun;77(6):392–396. [PubMed] [Google Scholar]
  20. Park J. W., Babior B. M. The translocation of respiratory burst oxidase components from cytosol to plasma membrane is regulated by guanine nucleotides and diacylglycerol. J Biol Chem. 1992 Oct 5;267(28):19901–19906. [PubMed] [Google Scholar]
  21. Roxvall L. I., Bengtson L. A., Heideman J. M. Anaphylatoxins and terminal complement complexes in pancreatitis. Evidence of complement activation in plasma and ascites fluid of patients with acute pancreatitis. Arch Surg. 1990 Jul;125(7):918–921. doi: 10.1001/archsurg.1990.01410190116019. [DOI] [PubMed] [Google Scholar]
  22. Roxvall L., Bengtson A., Heideman M. Anaphylatoxin generation in acute pancreatitis. J Surg Res. 1989 Aug;47(2):138–143. doi: 10.1016/0022-4804(89)90078-4. [DOI] [PubMed] [Google Scholar]
  23. Rutledge P. L., Saluja A. K., Powers R. E., Steer M. L. Role of oxygen-derived free radicals in diet-induced hemorrhagic pancreatitis in mice. Gastroenterology. 1987 Jul;93(1):41–47. doi: 10.1016/0016-5085(87)90311-8. [DOI] [PubMed] [Google Scholar]
  24. Sanfey H., Bulkley G. B., Cameron J. L. The pathogenesis of acute pancreatitis. The source and role of oxygen-derived free radicals in three different experimental models. Ann Surg. 1985 May;201(5):633–639. doi: 10.1097/00000658-198505000-00013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanfey H., Bulkley G. B., Cameron J. L. The role of oxygen-derived free radicals in the pathogenesis of acute pancreatitis. Ann Surg. 1984 Oct;200(4):405–413. doi: 10.1097/00000658-198410000-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schoenberg M. H., Büchler M., Baczako K., Bültmann B., Younes M., Gasper M., Kirchmayr R., Beger H. G. The involvement of oxygen radicals in acute pancreatitis. Klin Wochenschr. 1991 Dec 15;69(21-23):1025–1031. doi: 10.1007/BF01645152. [DOI] [PubMed] [Google Scholar]
  27. Schoenberg M. H., Büchler M., Gaspar M., Stinner A., Younes M., Melzner I., Bültmann B., Beger H. G. Oxygen free radicals in acute pancreatitis of the rat. Gut. 1990 Oct;31(10):1138–1143. doi: 10.1136/gut.31.10.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sinha S., Watorek W., Karr S., Giles J., Bode W., Travis J. Primary structure of human neutrophil elastase. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2228–2232. doi: 10.1073/pnas.84.8.2228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steer M. L., Rutledge P. L., Powers R. E., Saluja M., Saluja A. K. The role of oxygen-derived free radicals in two models of experimental acute pancreatitis: effects of catalase, superoxide dismutase, dimethylsulfoxide, and allopurinol. Klin Wochenschr. 1991 Dec 15;69(21-23):1012–1017. doi: 10.1007/BF01645149. [DOI] [PubMed] [Google Scholar]
  30. Uys C. J., Bank S., Marks I. N. The pathology of chronic pancreatitis in Cape Town. Digestion. 1973;9(5):454–468. doi: 10.1159/000197474. [DOI] [PubMed] [Google Scholar]
  31. Zhou W. G., Chao W., Levine B. A., Olson M. S. Evidence for platelet-activating factor as a late-phase mediator of chronic pancreatitis in the rat. Am J Pathol. 1990 Dec;137(6):1501–1508. [PMC free article] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES