Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Jan;114(2):383–390. doi: 10.1111/j.1476-5381.1995.tb13238.x

Regulation of histamine- and UTP-induced increases in Ins(1,4,5)P3, Ins (1,3,4,5)P4 and Ca2+ by cyclic AMP in DDT1 MF-2 cells.

H Sipma 1, M Duin 1, B Hoiting 1, A den Hertog 1, A Nelemans 1
PMCID: PMC1510268  PMID: 7881738

Abstract

1. Stimulation of P2U-purinoceptors with UTP or histamine H1-receptors with histamine gave rise to the formation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) in DDT1 MF-2 smooth muscle cells. 2. Stimulation of P2U-purinoceptors or histamine H1-receptors caused an increase in cytoplasmic Ca2+, consisting of an initial peak, representing the release of Ca2+ from internal stores and a sustained phase representing Ca2+ influx. 3. The P2U-purinoceptor-mediated Ca(2+)-entry mechanism was more sensitive to UTP than Ca(2+)-mobilization (EC50: 3.3 microM +/- 0.4 microM vs 55.1 microM +/- 9.2 microM), in contrast to these processes activated by histamine H1-receptors (EC50: 5.8 microM +/- 0.6 microM vs 3.1 microM +/- 0.5 microM). 4. Pre-stimulation of cells with several adenosine 3':5'-cyclic monophosphate (cyclic AMP) elevating agents, reduced the histamine H1-receptor-mediated formation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin completely inhibited Ins(1,4,5)P3 formation (IC50: 158 +/- 24 nM) whereas Ins(1,3,4,5)P4 formation was inhibited by only 45% (IC50: 173 +/- 16 nM). The P2U-purinoceptor-mediated production of these inositol phosphates was not affected by cyclic AMP. 5. Forskolin and isoprenaline reduced the histamine-induced increase in cytoplasmic Ca2+, as measured in Ca2+ containing medium and in nominally Ca(2+)-free medium but did not change the UTP-induced increase in cytoplasmic Ca2+. 6. These results clearly demonstrate that cyclic AMP differentially regulates components of the histamine induced phospholipase C signal transduction pathway. Furthermore, cyclic AMP does not affect the phospholipase C pathway activated by stimulation of P2U-purinoceptors in DDT1 MF-2 cells.

Full text

PDF
383

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Latif A. A. Biochemical and functional interactions between the inositol 1,4,5-trisphosphate-Ca2+ and cyclic AMP signalling systems in smooth muscle. Cell Signal. 1991;3(5):371–385. doi: 10.1016/0898-6568(91)90068-6. [DOI] [PubMed] [Google Scholar]
  2. Adelstein R. S., Conti M. A., Hathaway D. R., Klee C. B. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3': 5'-monophosphate-dependent protein kinase. J Biol Chem. 1978 Dec 10;253(23):8347–8350. [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  4. Biden T. J., Vallar L., Wollheim C. B. Regulation of inositol 1,4,5-trisphosphate metabolism in insulin-secreting RINm5F cells. Biochem J. 1988 Apr 15;251(2):435–440. doi: 10.1042/bj2510435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boarder M. R., Challiss R. A. Role of protein kinase C in the regulation of histamine and bradykinin stimulated inositol polyphosphate turnover in adrenal chromaffin cells. Br J Pharmacol. 1992 Dec;107(4):1140–1145. doi: 10.1111/j.1476-5381.1992.tb13420.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bülbring E., Tomita T. Catecholamine action on smooth muscle. Pharmacol Rev. 1987 Mar;39(1):49–96. [PubMed] [Google Scholar]
  8. Bülbring E., den Hertog A. The action of isoprenaline on the smooth muscle of the guinea-pig taenia coli. J Physiol. 1980 Jul;304:277–296. doi: 10.1113/jphysiol.1980.sp013324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen X. L., Rembold C. M. Cyclic nucleotide-dependent regulation of Mn2+ influx, [Ca2+]i, and arterial smooth muscle relaxation. Am J Physiol. 1992 Aug;263(2 Pt 1):C468–C473. doi: 10.1152/ajpcell.1992.263.2.C468. [DOI] [PubMed] [Google Scholar]
  10. Chilvers E. R., Challiss R. A., Barnes P. J., Nahorski S. R. Mass changes of inositol(1,4,5)trisphosphate in trachealis muscle following agonist stimulation. Eur J Pharmacol. 1989 May 30;164(3):587–590. doi: 10.1016/0014-2999(89)90269-0. [DOI] [PubMed] [Google Scholar]
  11. Cussac D., Kordon C., Enjalbert A., Saltarelli D. Vip-induced cross-talk between G-proteins in membranes from rat anterior pituitary cells. Cell Signal. 1993 Mar;5(2):119–137. doi: 10.1016/0898-6568(93)90064-s. [DOI] [PubMed] [Google Scholar]
  12. Den Hertog A. Calcium and the alpha-action of catecholamines on guinea-pig taenia caeci. J Physiol. 1981 Jul;316:109–125. doi: 10.1113/jphysiol.1981.sp013776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Den Hertog A., Hoiting B., Molleman A., Van den Akker J., Duin M., Nelemans A. Calcium release from separate receptor-specific intracellular stores induced by histamine and ATP in a hamster cell line. J Physiol. 1992 Aug;454:591–607. doi: 10.1113/jphysiol.1992.sp019281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dickenson J. M., White T. E., Hill S. J. The effects of elevated cyclic AMP levels on histamine-H1-receptor-stimulated inositol phospholipid hydrolysis and calcium mobilization in the smooth-muscle cell line DDT1MF-2. Biochem J. 1993 Jun 1;292(Pt 2):409–417. doi: 10.1042/bj2920409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Donié F., Reiser G. A novel, specific binding protein assay for quantitation of intracellular inositol 1,3,4,5-tetrakisphosphate (InsP4) using a high-affinity InsP4 receptor from cerebellum. FEBS Lett. 1989 Aug 28;254(1-2):155–158. doi: 10.1016/0014-5793(89)81029-4. [DOI] [PubMed] [Google Scholar]
  16. Ely J. A., Hunyady L., Baukal A. J., Catt K. J. Inositol 1,3,4,5-tetrakisphosphate stimulates calcium release from bovine adrenal microsomes by a mechanism independent of the inositol 1,4,5-trisphosphate receptor. Biochem J. 1990 Jun 1;268(2):333–338. doi: 10.1042/bj2680333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fredholm B. B., Abbracchio M. P., Burnstock G., Daly J. W., Harden T. K., Jacobson K. A., Leff P., Williams M. Nomenclature and classification of purinoceptors. Pharmacol Rev. 1994 Jun;46(2):143–156. [PMC free article] [PubMed] [Google Scholar]
  18. Fujimoto K., Horio Y., Sugama K., Ito S., Liu Y. Q., Fukui H. Genomic cloning of the rat histamine H1 receptor. Biochem Biophys Res Commun. 1993 Jan 15;190(1):294–301. doi: 10.1006/bbrc.1993.1045. [DOI] [PubMed] [Google Scholar]
  19. Gawler D. J., Potter B. V., Gigg R., Nahorski S. R. Interactions between inositol tris- and tetrakis-phosphates. Effects on intracellular Ca2+ mobilization in SH-SY5Y cells. Biochem J. 1991 May 15;276(Pt 1):163–167. doi: 10.1042/bj2760163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gerwins P., Fredholm B. B. ATP and its metabolite adenosine act synergistically to mobilize intracellular calcium via the formation of inositol 1,4,5-trisphosphate in a smooth muscle cell line. J Biol Chem. 1992 Aug 15;267(23):16081–16087. [PubMed] [Google Scholar]
  21. Hall I. P., Donaldson J., Hill S. J. Inhibition of histamine-stimulated inositol phospholipid hydrolysis by agents which increase cyclic AMP levels in bovine tracheal smooth muscle. Br J Pharmacol. 1989 Jun;97(2):603–613. doi: 10.1111/j.1476-5381.1989.tb11992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hesketh T. R., Smith G. A., Moore J. P., Taylor M. V., Metcalfe J. C. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem. 1983 Apr 25;258(8):4876–4882. [PubMed] [Google Scholar]
  23. Hoiting B., Molleman A., Duin M., den Hertog A., Nelemans A. P2 purinoceptor-mediated inositol phosphate formation in relation to cytoplasmic calcium in DDT1 MF-2 smooth muscle cells. Eur J Pharmacol. 1990 Jul 31;189(1):31–39. doi: 10.1016/0922-4106(90)90227-o. [DOI] [PubMed] [Google Scholar]
  24. Kamm K. E., Stull J. T. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol. 1985;25:593–620. doi: 10.1146/annurev.pa.25.040185.003113. [DOI] [PubMed] [Google Scholar]
  25. Lustig K. D., Shiau A. K., Brake A. J., Julius D. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5113–5117. doi: 10.1073/pnas.90.11.5113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Manolopoulos V. G., Pipili-Synetos E., Den Hertog A., Nelemans A. Inositol phosphates formed in rat aorta after alpha 1-adrenoceptor stimulation are inhibited by forskolin. Eur J Pharmacol. 1991 May 25;207(1):29–36. doi: 10.1016/s0922-4106(05)80034-3. [DOI] [PubMed] [Google Scholar]
  27. Molleman A., Hoiting B., Duin M., van den Akker J., Nelemans A., Den Hertog A. Potassium channels regulated by inositol 1,3,4,5-tetrakisphosphate and internal calcium in DDT1 MF-2 smooth muscle cells. J Biol Chem. 1991 Mar 25;266(9):5658–5663. [PubMed] [Google Scholar]
  28. Molleman A., Nelemans A., Den Hertog A. P2-purinoceptor-mediated membrane currents in DDT1 MF-2 smooth muscle cells. Eur J Pharmacol. 1989 Oct 4;169(1):167–174. doi: 10.1016/0014-2999(89)90829-7. [DOI] [PubMed] [Google Scholar]
  29. Morris A. J., Murray K. J., England P. J., Downes C. P., Michell R. H. Partial purification and some properties of rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1988 Apr 1;251(1):157–163. doi: 10.1042/bj2510157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mueller E., van Breemen C. Role of intracellular Ca2+ sequestration in beta-adrenergic relaxation of a smooth muscle. Nature. 1979 Oct 25;281(5733):682–683. doi: 10.1038/281682a0. [DOI] [PubMed] [Google Scholar]
  31. Norris J. S., Gorski J., Kohler P. O. Androgen receptors in a Syrian hamster ductus deferens tumour cell line. Nature. 1974 Mar 29;248(447):422–424. doi: 10.1038/248422a0. [DOI] [PubMed] [Google Scholar]
  32. Okajima F., Tokumitsu Y., Kondo Y., Ui M. P2-purinergic receptors are coupled to two signal transduction systems leading to inhibition of cAMP generation and to production of inositol trisphosphate in rat hepatocytes. J Biol Chem. 1987 Oct 5;262(28):13483–13490. [PubMed] [Google Scholar]
  33. Schachter J. B., Ivins J. K., Pittman R. N., Wolfe B. B. Competitive regulation of phospholipase C responses by cAMP and calcium. Mol Pharmacol. 1992 Mar;41(3):577–586. [PubMed] [Google Scholar]
  34. Seamon K. B., Daly J. W. Forskolin: its biological and chemical properties. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1986;20:1–150. [PubMed] [Google Scholar]
  35. Sim S. S., Kim J. W., Rhee S. G. Regulation of D-myo-inositol 1,4,5-trisphosphate 3-kinase by cAMP-dependent protein kinase and protein kinase C. J Biol Chem. 1990 Jun 25;265(18):10367–10372. [PubMed] [Google Scholar]
  36. Sipma H., den Hertog A., Nelemans A. The phospholipase C activating P2U purinoceptor also inhibits cyclicAMP formation in DDT1 MF-2 smooth muscle cells. Eur J Pharmacol. 1994 Aug 16;268(3):431–437. doi: 10.1016/0922-4106(94)90069-8. [DOI] [PubMed] [Google Scholar]
  37. Takazawa K., Vandekerckhove J., Dumont J. E., Erneux C. Cloning and expression in Escherichia coli of a rat brain cDNA encoding a Ca2+/calmodulin-sensitive inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1990 Nov 15;272(1):107–112. doi: 10.1042/bj2720107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Van der Zee L., Nelemans A., Den Hertog A. Nucleotide receptors on DDT1 MF-2 vas deferens cells. Eur J Pharmacol. 1992 May 14;215(2-3):317–320. doi: 10.1016/0014-2999(92)90048-9. [DOI] [PubMed] [Google Scholar]
  39. White T. E., Dickenson J. M., Hill S. J. Histamine H1-receptor-mediated inositol phospholipid hydrolysis in DDT1MF-2 cells: agonist and antagonist properties. Br J Pharmacol. 1993 Jan;108(1):196–203. doi: 10.1111/j.1476-5381.1993.tb13462.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Xuan Y. T., Watkins W. D., Whorton A. R. Regulation of endothelin-mediated calcium mobilization in vascular smooth muscle cells by isoproterenol. Am J Physiol. 1991 Mar;260(3 Pt 1):C492–C502. doi: 10.1152/ajpcell.1991.260.3.C492. [DOI] [PubMed] [Google Scholar]
  41. Yamada M., Hamamori Y., Akita H., Yokoyama M. P2-purinoceptor activation stimulates phosphoinositide hydrolysis and inhibits accumulation of cAMP in cultured ventricular myocytes. Circ Res. 1992 Mar;70(3):477–485. doi: 10.1161/01.res.70.3.477. [DOI] [PubMed] [Google Scholar]
  42. Yamashita M., Fukui H., Sugama K., Horio Y., Ito S., Mizuguchi H., Wada H. Expression cloning of a cDNA encoding the bovine histamine H1 receptor. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11515–11519. doi: 10.1073/pnas.88.24.11515. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES