Abstract
1. The role of adenosine 3':5'-cyclic monophosphate (cyclic AMP) in the regulation of catecholamine (CA) secretion in chromaffin cells remains equivocal from previous studies. 2. In the present study the effect of this cyclic nucleotide on basal CA secretion, as well as on intracellular calcium and membrane potential has been examined. 3. Forskolin and the permeable cyclic AMP analogue, 8-(4-chlorphenylthio)-adenosine-3'-5' monophosphate cyclic (pClpcAMP), increased basal CA secretion in a dose-dependent manner. The EC50s were 0.43 +/- 0.10 microM for forskolin and 39 +/- 9 microM for pClpcAMP. Other agonists with adenylate cyclase activity such as stimulants of adenosine receptors, beta-adrenoceptors, GABAB receptors and intestinal vasoactive peptide (VIP), also increased basal CA secretion in a highly significant manner. However, when they were added together with forskolin, CA secretion was not affected although an additive increase in cyclic AMP levels was produced. 4. Statistical analysis of the correlation between cyclic AMP levels and CA secretion evoked by these cyclic AMP increasing compounds showed that a significant direct correlation between both parameters existed only when low levels of cyclic AMP were produced by secretagogue stimulation. When the increase in intracellular cyclic AMP concentrations exceeded approximately 8 times the basal cyclic AMP levels the correlation was not significant. These results indicate a dual dose-dependent effect of cyclic AMP on basal CA secretion.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ammälä C., Ashcroft F. M., Rorsman P. Calcium-independent potentiation of insulin release by cyclic AMP in single beta-cells. Nature. 1993 May 27;363(6427):356–358. doi: 10.1038/363356a0. [DOI] [PubMed] [Google Scholar]
- Artalejo C. R., Ariano M. A., Perlman R. L., Fox A. P. Activation of facilitation calcium channels in chromaffin cells by D1 dopamine receptors through a cAMP/protein kinase A-dependent mechanism. Nature. 1990 Nov 15;348(6298):239–242. doi: 10.1038/348239a0. [DOI] [PubMed] [Google Scholar]
- Bader M. F., Ciesielski-Treska J., Thierse D., Hesketh J. E., Aunis D. Immunocytochemical study of microtubules in chromaffin cells in culture and evidence that tubulin is not an integral protein of the chromaffin granule membrane. J Neurochem. 1981 Oct;37(4):917–933. doi: 10.1111/j.1471-4159.1981.tb04479.x. [DOI] [PubMed] [Google Scholar]
- Bader M. F., Sontag J. M., Thiersé D., Aunis D. A reassessment of guanine nucleotide effects on catecholamine secretion from permeabilized adrenal chromaffin cells. J Biol Chem. 1989 Oct 5;264(28):16426–16434. [PubMed] [Google Scholar]
- Baker E. M., Cheek T. R., Burgoyne R. D. Cyclic AMP inhibits secretion from bovine adrenal chromaffin cells evoked by carbamylcholine but not by high K+. Biochim Biophys Acta. 1985 Sep 30;846(3):388–393. doi: 10.1016/0167-4889(85)90010-2. [DOI] [PubMed] [Google Scholar]
- Bittner M. A., Holz R. W., Neubig R. R. Guanine nucleotide effects on catecholamine secretion from digitonin-permeabilized adrenal chromaffin cells. J Biol Chem. 1986 Aug 5;261(22):10182–10188. [PubMed] [Google Scholar]
- Burgoyne R. D. Control of exocytosis in adrenal chromaffin cells. Biochim Biophys Acta. 1991 Jul 22;1071(2):174–202. doi: 10.1016/0304-4157(91)90024-q. [DOI] [PubMed] [Google Scholar]
- Castro E., Torres M., Miras-Portugal M. T., Gonzalez M. P. Effect of diadenosine polyphosphates on catecholamine secretion from isolated chromaffin cells. Br J Pharmacol. 1990 Jun;100(2):360–364. doi: 10.1111/j.1476-5381.1990.tb15809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ceña V., Brocklehurst K. W., Pollard H. B., Rojas E. Pertussis toxin stimulation of catecholamine release from adrenal medullary chromaffin cells: mechanism may be by direct activation of L-type and G-type calcium channels. J Membr Biol. 1991 May;122(1):23–31. doi: 10.1007/BF01872736. [DOI] [PubMed] [Google Scholar]
- Cheek T. R., Burgoyne R. D. Cyclic AMP inhibits both nicotine-induced actin disassembly and catecholamine secretion from bovine adrenal chromaffin cells. J Biol Chem. 1987 Aug 25;262(24):11663–11666. [PubMed] [Google Scholar]
- Cheek T. R., Thastrup O. Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells. Cell Calcium. 1989 May-Jun;10(4):213–221. doi: 10.1016/0143-4160(89)90004-3. [DOI] [PubMed] [Google Scholar]
- Chern Y. J., Kim K. T., Slakey L. L., Westhead E. W. Adenosine receptors activate adenylate cyclase and enhance secretion from bovine adrenal chromaffin cells in the presence of forskolin. J Neurochem. 1988 May;50(5):1484–1493. doi: 10.1111/j.1471-4159.1988.tb03034.x. [DOI] [PubMed] [Google Scholar]
- Choi A. Y., Cahill A. L., Perry B. D., Perlman R. L. Histamine evokes greater increases in phosphatidylinositol metabolism and catecholamine secretion in epinephrine-containing than in norepinephrine-containing chromaffin cells. J Neurochem. 1993 Aug;61(2):541–549. doi: 10.1111/j.1471-4159.1993.tb02157.x. [DOI] [PubMed] [Google Scholar]
- Douglas W. W., Rubin R. P. The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J Physiol. 1963 Jul;167(2):288–310. doi: 10.1113/jphysiol.1963.sp007150. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eberhard D. A., Holz R. W. Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms. J Neurochem. 1987 Nov;49(5):1634–1643. doi: 10.1111/j.1471-4159.1987.tb01037.x. [DOI] [PubMed] [Google Scholar]
- Gutman Y., Boonyaviroj P. Activation of adrenal medulla adenylate cylase and catecholamine secretion. Naunyn Schmiedebergs Arch Pharmacol. 1979 May;307(1):39–44. doi: 10.1007/BF00506549. [DOI] [PubMed] [Google Scholar]
- Higgins L. S., Berg D. K. Cyclic AMP-dependent mechanism regulates acetylcholine receptor function on bovine adrenal chromaffin cells and discriminates between new and old receptors. J Cell Biol. 1988 Sep;107(3):1157–1165. doi: 10.1083/jcb.107.3.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochman J., Perlman R. L. Catecholamine secretion by isolated adrenal cells. Biochim Biophys Acta. 1976 Jan 14;421(1):168–175. doi: 10.1016/0304-4165(76)90180-x. [DOI] [PubMed] [Google Scholar]
- Isobe K., Nakai T., Takuwa Y. Ca(2+)-dependent stimulatory effect of pituitary adenylate cyclase-activating polypeptide on catecholamine secretion from cultured porcine adrenal medullary chromaffin cells. Endocrinology. 1993 Apr;132(4):1757–1765. doi: 10.1210/endo.132.4.8384995. [DOI] [PubMed] [Google Scholar]
- Knight D. E., Baker P. F. Calcium-dependence of catecholamine release from bovine adrenal medullary cells after exposure to intense electric fields. J Membr Biol. 1982;68(2):107–140. doi: 10.1007/BF01872259. [DOI] [PubMed] [Google Scholar]
- Kumakura K., Guidotti A., Costa E. Primary cultures of chromaffin cells: molecular mechanisms for the induction of tyrosine hydroxylase mediated by 8-Br-cyclic AMP. Mol Pharmacol. 1979 Nov;16(3):865–876. [PubMed] [Google Scholar]
- Marriott D., Adams M., Boarder M. R. Effect of forskolin and prostaglandin E1 on stimulus secretion coupling in cultured bovine adrenal chromaffin cells. J Neurochem. 1988 Feb;50(2):616–623. doi: 10.1111/j.1471-4159.1988.tb02955.x. [DOI] [PubMed] [Google Scholar]
- Morgan A., Wilkinson M., Burgoyne R. D. Identification of Exo2 as the catalytic subunit of protein kinase A reveals a role for cyclic AMP in Ca(2+)-dependent exocytosis in chromaffin cells. EMBO J. 1993 Oct;12(10):3747–3752. doi: 10.1002/j.1460-2075.1993.tb06052.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morita K., Dohi T., Kitayama S., Koyama Y., Tsujimoto A. Enhancement of stimulation-evoked catecholamine release from cultured bovine adrenal chromaffin cells by forskolin. J Neurochem. 1987 Jan;48(1):243–247. doi: 10.1111/j.1471-4159.1987.tb13154.x. [DOI] [PubMed] [Google Scholar]
- Negishi M., Ito S., Hayaishi O. Prostaglandin E receptors in bovine adrenal medulla are coupled to adenylate cyclase via Gi and to phosphoinositide metabolism in a pertussis toxin-insensitive manner. J Biol Chem. 1989 Mar 5;264(7):3916–3923. [PubMed] [Google Scholar]
- Oset-Gasque M. J., Parramón M., González M. P. GABAB receptors modulate catecholamine secretion in chromaffin cells by a mechanism involving cyclic AMP formation. Br J Pharmacol. 1993 Dec;110(4):1586–1592. doi: 10.1111/j.1476-5381.1993.tb14005.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peach M. J. Stimulation of release of adrenal catecholamine by adenosine 3':5'-cyclic monophosphate and theophylline in the absence of extracellular Ca 2+ . Proc Natl Acad Sci U S A. 1972 Apr;69(4):834–836. doi: 10.1073/pnas.69.4.834. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sikdar S. K., Zorec R., Mason W. T. cAMP directly facilitates Ca-induced exocytosis in bovine lactotrophs. FEBS Lett. 1990 Oct 29;273(1-2):150–154. doi: 10.1016/0014-5793(90)81072-v. [DOI] [PubMed] [Google Scholar]
- Sontag J. M., Thierse D., Rouot B., Aunis D., Bader M. F. A pertussis-toxin-sensitive protein controls exocytosis in chromaffin cells at a step distal to the generation of second messengers. Biochem J. 1991 Mar 1;274(Pt 2):339–347. doi: 10.1042/bj2740339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waggoner A. S. Dye indicators of membrane potential. Annu Rev Biophys Bioeng. 1979;8:47–68. doi: 10.1146/annurev.bb.08.060179.000403. [DOI] [PubMed] [Google Scholar]
- Wilson S. P. Vasoactive intestinal peptide elevates cyclic AMP levels and potentiates secretion in bovine adrenal chromaffin cells. Neuropeptides. 1988 Jan;11(1):17–21. doi: 10.1016/0143-4179(88)90023-6. [DOI] [PubMed] [Google Scholar]
- Wilson S. P. Vasoactive intestinal peptide is a secretagogue in bovine chromaffin cells pretreated with pertussis toxin. Neuropeptides. 1992 Nov;23(3):187–192. doi: 10.1016/0143-4179(92)90121-c. [DOI] [PubMed] [Google Scholar]
