Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Mar 1;306(Pt 2):537–543. doi: 10.1042/bj3060537

Cause of spectral variation in the luminescence of semisynthetic aequorins.

O Shimomura 1
PMCID: PMC1136551  PMID: 7887908

Abstract

Aequorin emits light in the presence of Ca2+, decomposing into apoaequorin, coelenteramide and CO2. Semisynthetic aequorins, produced by replacing the coelenterazine moiety in aequorin with analogues of coelenterazine, showed widely different sensitivities to Ca2+ as well as certain spectral variations. A group of semisynthetic aequorins, e-type aequorins, showed bimodal luminescence, with peaks at 400-405 nm and 440-475 nm in various intensity ratios, whereas all other aequorins luminesced with only one peak, in the range 440-475 nm. The cause of the spectral variation was studied by various experiments including: (1) comparison with the fluorescence of the spent solution and the luminescence of the spent solution produced by added coelenterazine; (2) luminescence in 2H2O; (3) the rate of conformational change of apoaequorin; (4) the rates of regeneration in the presence and absence of O2. The results suggested that the spectrum of Ca(2+)-triggered luminescence is strongly affected by the ionic charge on the amide N atom of the coelenteramide that is bound to apoaequorin. When the amide N atom is negatively charged, light is emitted with a 440-475 nm peak. In the case of e-type aequorins, the negative charge on the amide N atom is less because of the structure of e-coelenterazine involved, resulting in the emission of a 400-405 nm peak from the uncharged form of coelenteramide; the intensity ratio of 400-405 nm peak to 440-475 nm peak is determined by the amount of negative charge resting on the amide N atom of e-coelenteramide at the time of light emission. Most of the spectral variations in luminescence and fluorescence can be explained on the basis of ionic and hydrophobic interaction between a coelenteramide and apoaequorin.

Full text

PDF
537

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Inouye S., Aoyama S., Miyata T., Tsuji F. I., Sakaki Y. Overexpression and purification of the recombinant Ca2+-binding protein, apoaequorin. J Biochem. 1989 Mar;105(3):473–477. doi: 10.1093/oxfordjournals.jbchem.a122689. [DOI] [PubMed] [Google Scholar]
  2. Inouye S., Noguchi M., Sakaki Y., Takagi Y., Miyata T., Iwanaga S., Miyata T., Tsuji F. I. Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc Natl Acad Sci U S A. 1985 May;82(10):3154–3158. doi: 10.1073/pnas.82.10.3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Prasher D., McCann R. O., Cormier M. J. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun. 1985 Feb 15;126(3):1259–1268. doi: 10.1016/0006-291x(85)90321-3. [DOI] [PubMed] [Google Scholar]
  4. SHIMOMURA O., JOHNSON F. H., SAIGA Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol. 1962 Jun;59:223–239. doi: 10.1002/jcp.1030590302. [DOI] [PubMed] [Google Scholar]
  5. Shimomura O. Bioluminescence in the sea: photoprotein systems. Symp Soc Exp Biol. 1985;39:351–372. [PubMed] [Google Scholar]
  6. Shimomura O., Goto T., Johnson F. H. Source of oxygen in the CO(2) produced in the bioluminescent oxidation of firefly luciferin. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2799–2802. doi: 10.1073/pnas.74.7.2799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Shimomura O., Inouye S., Musicki B., Kishi Y. Recombinant aequorin and recombinant semi-synthetic aequorins. Cellular Ca2+ ion indicators. Biochem J. 1990 Sep 1;270(2):309–312. doi: 10.1042/bj2700309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shimomura O. Isolation and properties of various molecular forms of aequorin. Biochem J. 1986 Mar 1;234(2):271–277. doi: 10.1042/bj2340271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shimomura O., Johnson F. H. Calcium binding, quantum yield, and emitting molecule in aequorin bioluminescence. Nature. 1970 Sep 26;227(5265):1356–1357. doi: 10.1038/2271356a0. [DOI] [PubMed] [Google Scholar]
  10. Shimomura O., Johnson F. H. Mechanisms in the quantum yield of Cypridina bioluminescence. Photochem Photobiol. 1970 Oct;12(4):291–295. doi: 10.1111/j.1751-1097.1970.tb06061.x. [DOI] [PubMed] [Google Scholar]
  11. Shimomura O., Johnson F. H. Peroxidized coelenterazine, the active group in the photoprotein aequorin. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2611–2615. doi: 10.1073/pnas.75.6.2611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shimomura O., Johnson F. H. Regeneration of the photoprotein aequorin. Nature. 1975 Jul 17;256(5514):236–238. doi: 10.1038/256236a0. [DOI] [PubMed] [Google Scholar]
  13. Shimomura O., Musicki B., Kishi Y. Semi-synthetic aequorin. An improved tool for the measurement of calcium ion concentration. Biochem J. 1988 Apr 15;251(2):405–410. doi: 10.1042/bj2510405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shimomura O., Musicki B., Kishi Y. Semi-synthetic aequorins with improved sensitivity to Ca2+ ions. Biochem J. 1989 Aug 1;261(3):913–920. doi: 10.1042/bj2610913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Shimomura O., Shimomura A. Resistivity to denaturation of the apoprotein of aequorin and reconstitution of the luminescent photoprotein from the partially denatured apoprotein. Biochem J. 1981 Dec 1;199(3):825–828. doi: 10.1042/bj1990825. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES