Abstract
1. An inositol trisphosphate (InsP3) distinct from Ins(1,4,5)P3 and Ins(1,3,4)P3, which we previously observed in myeloid and lymphoid cells [French, Bunce, Stephens, Lord, McConnell, Brown, Creba and Michell (1991) Proc R. Soc. London B 245, 193-201; Bunce, French, Allen, Mountford, Moore, Greaves, Michell and Brown (1993) Biochem. J. 289, 667-673], is present in WRK1 rat mammary tumour cells and pancreatic endocrine beta-cells. 2. It has been identified as Ins(1,2,3)P3 by a combination of oxidation to ribitol, a structurally diagnostic polyol, and ammoniacal hydrolysis to identified inositol monophosphates. 3. Ins(1,2,3)P3 concentration in HL60 cells changed little during stimulation by ATP or fMetLeuPhe or during neutrophilic or monocytic differentiation, and Ins(1,2,3)P3 was unresponsive to vasopressin in WRK1 cells. 4. Ins(1,2,3)P3 was usually more abundant than Ins(1,4,5)P3, often being present at concentrations between approximately 1 microM and approximately 10 microM. 5. HL60, WRK-1 and lymphoid cells also contain Ins(1,2)P2 or Ins(2,3)P2, or a mixture of these two enantiomers, as a major InsP2 species. 6. Ins(1,2,3)P3 and Ins(1,2)P2/Ins(2,3)P2 are readily detected in cells labelled for long periods, but not in acutely labelled cells. This behaviour resembles that of InsP6, the most abundant cellular inositol polyphosphate that includes the 1,2,3-trisphosphate motif, which also achieves isotopic equilibrium with inositol only slowly. 7. Ins(1,2,3)P3 is the major InsP3 that accumulates during metabolism of InsP6 by WRK-1 cell homogenates. 8. Possible metabolic relationships between Ins(1,2,3)P3, Ins(1,2)P2/Ins(2,3)P2 and other inositol polyphosphates in cells, and a possible role for Ins(1,2,3)P3 in cellular iron handling, are considered.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barker C. J., Nilsson T., Kirk C. J., Michell R. H., Berggren P. O. Simultaneous oscillations of cytoplasmic free Ca2+ concentration and Ins(1,4,5)P3 concentration in mouse pancreatic beta-cells. Biochem J. 1994 Jan 15;297(Pt 2):265–268. doi: 10.1042/bj2970265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker C. J., Wong N. S., Maccallum S. M., Hunt P. A., Michell R. H., Kirk C. J. The interrelationships of the inositol phosphates formed in vasopressin-stimulated WRK-1 rat mammary tumour cells. Biochem J. 1992 Sep 1;286(Pt 2):469–474. doi: 10.1042/bj2860469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker C. J., Wright J., Kirk C. J., Michell R. H. Inositol 1,2,3-trisphosphate is a product of InsP6 dephosphorylation in WRK-1 rat mammary epithelial cells and exhibits transient concentration changes during the cell cycle. Biochem Soc Trans. 1995 May;23(2):169S–169S. doi: 10.1042/bst023169s. [DOI] [PubMed] [Google Scholar]
- Bunce C. M., French P. J., Allen P., Mountford J. C., Moor B., Greaves M. F., Michell R. H., Brown G. Comparison of the levels of inositol metabolites in transformed haemopoietic cells and their normal counterparts. Biochem J. 1993 Feb 1;289(Pt 3):667–673. doi: 10.1042/bj2890667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunce C. M., French P. J., Patton W. N., Turnell A. S., Scott S. A., Michell R. H., Kirk C. J., Brown G. Levels of inositol metabolites within normal myeloid blast cells and changes during their differentiation towards monocytes. Proc Biol Sci. 1992 Jan 22;247(1318):27–33. doi: 10.1098/rspb.1992.0005. [DOI] [PubMed] [Google Scholar]
- Cosgrove D. J. Ion-exchange chromatography of inositol polyphosphates. Ann N Y Acad Sci. 1969 Oct 17;165(2):677–686. [PubMed] [Google Scholar]
- Cowen D. S., Lazarus H. M., Shurin S. B., Stoll S. E., Dubyak G. R. Extracellular adenosine triphosphate activates calcium mobilization in human phagocytic leukocytes and neutrophil/monocyte progenitor cells. J Clin Invest. 1989 May;83(5):1651–1660. doi: 10.1172/JCI114064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubyak G. R., Cowen D. S., Meuller L. M. Activation of inositol phospholipid breakdown in HL60 cells by P2-purinergic receptors for extracellular ATP. Evidence for mediation by both pertussis toxin-sensitive and pertussis toxin-insensitive mechanisms. J Biol Chem. 1988 Dec 5;263(34):18108–18117. [PubMed] [Google Scholar]
- French P. J., Bunce C. M., Stephens L. R., Lord J. M., McConnell F. M., Brown G., Creba J. A., Michell R. H. Changes in the levels of inositol lipids and phosphates during the differentiation of HL60 promyelocytic cells towards neutrophils or monocytes. Proc Biol Sci. 1991 Sep 23;245(1314):193–201. doi: 10.1098/rspb.1991.0109. [DOI] [PubMed] [Google Scholar]
- Graf E., Eaton J. W. Antioxidant functions of phytic acid. Free Radic Biol Med. 1990;8(1):61–69. doi: 10.1016/0891-5849(90)90146-a. [DOI] [PubMed] [Google Scholar]
- Graf E., Empson K. L., Eaton J. W. Phytic acid. A natural antioxidant. J Biol Chem. 1987 Aug 25;262(24):11647–11650. [PubMed] [Google Scholar]
- Graf E., Mahoney J. R., Bryant R. G., Eaton J. W. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem. 1984 Mar 25;259(6):3620–3624. [PubMed] [Google Scholar]
- Guse A. H., Emmrich F. T-cell receptor-mediated metabolism of inositol polyphosphates in Jurkat T-lymphocytes. Identification of a D-myo-inositol 1,2,3,4,6-pentakisphosphate-2-phosphomonoesterase activity, a D-myo-inositol 1,3,4,5,6-pentakisphosphate-1/3-phosphatase activity and a D/L-myo-inositol 1,2,4,5,6-pentakisphosphate-1/3-kinase activity. J Biol Chem. 1991 Dec 25;266(36):24498–24502. [PubMed] [Google Scholar]
- Hawkins P. T., Poyner D. R., Jackson T. R., Letcher A. J., Lander D. A., Irvine R. F. Inhibition of iron-catalysed hydroxyl radical formation by inositol polyphosphates: a possible physiological function for myo-inositol hexakisphosphate. Biochem J. 1993 Sep 15;294(Pt 3):929–934. doi: 10.1042/bj2940929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes P. J., Michell R. H. Novel inositol containing phospholipids and phosphates: their synthesis and possible new roles in cellular signalling. Curr Opin Neurobiol. 1993 Jun;3(3):383–400. doi: 10.1016/0959-4388(93)90132-i. [DOI] [PubMed] [Google Scholar]
- Mattingly R. R., Stephens L. R., Irvine R. F., Garrison J. C. Effects of transformation with the v-src oncogene on inositol phosphate metabolism in rat-1 fibroblasts. D-myo-inositol 1,4,5,6-tetrakisphosphate is increased in v-src-transformed rat-1 fibroblasts and can be synthesized from D-myo-inositol 1,3,4-trisphosphate in cytosolic extracts. J Biol Chem. 1991 Aug 15;266(23):15144–15153. [PubMed] [Google Scholar]
- McConnell F. M., Shears S. B., Lane P. J., Scheibel M. S., Clark E. A. Relationships between the degree of cross-linking of surface immunoglobulin and the associated inositol 1,4,5-trisphosphate and Ca2+ signals in human B cells. Biochem J. 1992 Jun 1;284(Pt 2):447–455. doi: 10.1042/bj2840447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConnell F. M., Stephens L. R., Shears S. B. Multiple isomers of inositol pentakisphosphate in Epstein-Barr-virus- transformed (T5-1) B-lymphocytes. Identification of inositol 1,3,4,5,6-pentakisphosphate, D-inositol 1,2,4,5,6-pentakisphosphate and L-inositol 1,2,4,5,6-pentakisphosphate. Biochem J. 1991 Dec 1;280(Pt 2):323–329. doi: 10.1042/bj2800323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menniti F. S., Oliver K. G., Nogimori K., Obie J. F., Shears S. B., Putney J. W., Jr Origins of myo-inositol tetrakisphosphates in agonist-stimulated rat pancreatoma cells. Stimulation by bombesin of myo-inositol 1,3,4,5,6-pentakisphosphate breakdown to myo-inositol 3,4,5,6-tetrakisphosphate. J Biol Chem. 1990 Jul 5;265(19):11167–11176. [PubMed] [Google Scholar]
- Menniti F. S., Oliver K. G., Putney J. W., Jr, Shears S. B. Inositol phosphates and cell signaling: new views of InsP5 and InsP6. Trends Biochem Sci. 1993 Feb;18(2):53–56. doi: 10.1016/0968-0004(93)90053-p. [DOI] [PubMed] [Google Scholar]
- Mountford J. C., Bunce C. M., French P. J., Michell R. H., Brown G. Intracellular concentrations of inositol, glycerophosphoinositol and inositol pentakisphosphate increase during haemopoietic cell differentiation. Biochim Biophys Acta. 1994 May 26;1222(1):101–108. doi: 10.1016/0167-4889(94)90030-2. [DOI] [PubMed] [Google Scholar]
- Pittet D., Lew D. P., Mayr G. W., Monod A., Schlegel W. Chemoattractant receptor promotion of Ca2+ influx across the plasma membrane of HL-60 cells. A role for cytosolic free calcium elevations and inositol 1,3,4,5-tetrakisphosphate production. J Biol Chem. 1989 May 5;264(13):7251–7261. [PubMed] [Google Scholar]
- Pittet D., Schlegel W., Lew D. P., Monod A., Mayr G. W. Mass changes in inositol tetrakis- and pentakisphosphate isomers induced by chemotactic peptide stimulation in HL-60 cells. J Biol Chem. 1989 Nov 5;264(31):18489–18493. [PubMed] [Google Scholar]
- Stephens L. R., Hawkins P. T., Stanley A. F., Moore T., Poyner D. R., Morris P. J., Hanley M. R., Kay R. R., Irvine R. F. myo-inositol pentakisphosphates. Structure, biological occurrence and phosphorylation to myo-inositol hexakisphosphate. Biochem J. 1991 Apr 15;275(Pt 2):485–499. doi: 10.1042/bj2750485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stuart J. A., Anderson K. L., French P. J., Kirk C. J., Michell R. H. The intracellular distribution of inositol polyphosphates in HL60 promyeloid cells. Biochem J. 1994 Oct 15;303(Pt 2):517–525. doi: 10.1042/bj3030517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong N. S., Barker C. J., Morris A. J., Craxton A., Kirk C. J., Michell R. H. The inositol phosphates in WRK1 rat mammary tumour cells. Biochem J. 1992 Sep 1;286(Pt 2):459–468. doi: 10.1042/bj2860459. [DOI] [PMC free article] [PubMed] [Google Scholar]
