Abstract
1. Human muscle satellite cells (SC) were studied either immediately after dissociation of muscle biopsies or later, as they proliferated in culture. A purification procedure combined with clonal cultures ensured that electrophysiological recordings were done in myogenic cells. Hoechst staining for the DNA attested that cells were mononucleated. 2. The goals of this study were to examine (i) whether the electrophysiological properties of freshly isolated SC resembled those of SC that proliferated in culture for several weeks, (ii) whether freezing and thawing affected these properties, and (iii) whether SC constituted a homogeneous population. 3. We found that there were only subtle differences between the electrophysiological results obtained in freshly isolated SC and in proliferating SC with or without previous freezing and thawing. Most SC expressed two voltage-gated currents, a TTX-resistant Na+ current and a calcium-activated potassium current (IK, Ca). 4. The level of expression of the Na+ current and of IK, Ca was affected in a different way by cellular proliferation; the normalized Na+ conductance (pS pF-1) of proliferating cells resembled that of freshly isolated SC, whereas the IK, Ca conductance increased 10 times. The analysis of the amplitude distributions of the Na+ current and of IK, Ca in the various SC preparations suggested that there was only one class of SC.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bader C. R., Bertrand D., Cooper E., Mauro A. Membrane currents of rat satellite cells attached to intact skeletal muscle fibers. Neuron. 1988 May;1(3):237–240. doi: 10.1016/0896-6273(88)90144-4. [DOI] [PubMed] [Google Scholar]
- Baroffio A., Aubry J. P., Kaelin A., Krause R. M., Hamann M., Bader C. R. Purification of human muscle satellite cells by flow cytometry. Muscle Nerve. 1993 May;16(5):498–505. doi: 10.1002/mus.880160511. [DOI] [PubMed] [Google Scholar]
- Bertrand D., Bader C. R. DATAC: a multipurpose biological data analysis program based on a mathematical interpreter. Int J Biomed Comput. 1986 May;18(3-4):193–202. doi: 10.1016/0020-7101(86)90016-4. [DOI] [PubMed] [Google Scholar]
- Bischoff R. Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol. 1986 May;115(1):129–139. doi: 10.1016/0012-1606(86)90234-4. [DOI] [PubMed] [Google Scholar]
- Blatz A. L., Magleby K. L. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature. 1986 Oct 23;323(6090):718–720. doi: 10.1038/323718a0. [DOI] [PubMed] [Google Scholar]
- Blau H. M., Webster C. Isolation and characterization of human muscle cells. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5623–5627. doi: 10.1073/pnas.78.9.5623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brodie C., Bak A., Sampson S. R. Dependence of Na+,K+-ATPase and electrogenic component of Em in cultured myotubes on cell fusion. Brain Res. 1985 Jun 17;336(2):384–386. doi: 10.1016/0006-8993(85)90674-2. [DOI] [PubMed] [Google Scholar]
- Campion D. R. The muscle satellite cell: a review. Int Rev Cytol. 1984;87:225–251. doi: 10.1016/s0074-7696(08)62444-4. [DOI] [PubMed] [Google Scholar]
- Chua M., Betz W. J. Characterization of ion channels on the surface membrane of adult rat skeletal muscle. Biophys J. 1991 Jun;59(6):1251–1260. doi: 10.1016/S0006-3495(91)82340-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cognard C., Constantin B., Rivet-Bastide M., Raymond G. Intracellular calcium transients induced by different kinds of stimulus during myogenesis of rat skeletal muscle cells studied by laser cytofluorimetry with Indo-1. Cell Calcium. 1993 Apr;14(4):333–348. doi: 10.1016/0143-4160(93)90054-a. [DOI] [PubMed] [Google Scholar]
- Delaporte C., Dehaupas M., Fardeau M. Comparison between the growth pattern of cell cultures from normal and Duchenne dystrophy muscle. J Neurol Sci. 1984 May;64(2):149–160. doi: 10.1016/0022-510x(84)90033-9. [DOI] [PubMed] [Google Scholar]
- Duval A., Léoty C. Ionic currents in mammalian fast skeletal muscle. J Physiol. 1978 May;278:403–423. doi: 10.1113/jphysiol.1978.sp012312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Franklin R. M., Martin M. T. Staining and histochemistry of undecalcified bone embedded in a water-miscible plastic. Stain Technol. 1980 Sep;55(5):313–321. doi: 10.3109/10520298009067260. [DOI] [PubMed] [Google Scholar]
- Gonoi T., Sherman S. J., Catterall W. A. Voltage clamp analysis of tetrodotoxin-sensitive and -insensitive sodium channels in rat muscle cells developing in vitro. J Neurosci. 1985 Sep;5(9):2559–2564. doi: 10.1523/JNEUROSCI.05-09-02559.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Ikeda S. R., Schofield G. G. Tetrodotoxin-resistant sodium current of rat nodose neurones: monovalent cation selectivity and divalent cation block. J Physiol. 1987 Aug;389:255–270. doi: 10.1113/jphysiol.1987.sp016656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kidokoro Y. Developmental changes of membrane electrical properties in a rat skeletal muscle cell line. J Physiol. 1975 Jan;244(1):129–143. doi: 10.1113/jphysiol.1975.sp010787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirsch G. E., Anderson M. F. Sodium channel kinetics in normal and denervated rabbit muscle membrane. Muscle Nerve. 1986 Oct;9(8):738–747. doi: 10.1002/mus.880090810. [DOI] [PubMed] [Google Scholar]
- MAURO A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961 Feb;9:493–495. doi: 10.1083/jcb.9.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller C., Moczydlowski E., Latorre R., Phillips M. Charybdotoxin, a protein inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle. Nature. 1985 Jan 24;313(6000):316–318. doi: 10.1038/313316a0. [DOI] [PubMed] [Google Scholar]
- Moss F. P., Leblond C. P. Nature of dividing nuclei in skeletal muscle of growing rats. J Cell Biol. 1970 Feb;44(2):459–462. doi: 10.1083/jcb.44.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pröbstle T., Rüdel R., Ruppersberg J. P. Hodgkin-Huxley parameters of the sodium channels in human myoballs. Pflugers Arch. 1988 Aug;412(3):264–269. doi: 10.1007/BF00582507. [DOI] [PubMed] [Google Scholar]
- Renaud J. F., Desnuelle C., Schmid-Antomarchi H., Hugues M., Serratrice G., Lazdunski M. Expression of apamin receptor in muscles of patients with myotonic muscular dystrophy. Nature. 1986 Feb 20;319(6055):678–680. doi: 10.1038/319678a0. [DOI] [PubMed] [Google Scholar]
- Sarabia V., Klip A. Regulation of cytosolic Ca2+ in clonal human muscle cell cultures. Biochem Biophys Res Commun. 1989 Dec 29;165(3):1130–1137. doi: 10.1016/0006-291x(89)92720-4. [DOI] [PubMed] [Google Scholar]
- Schultz E., Lipton B. H. Skeletal muscle satellite cells: changes in proliferation potential as a function of age. Mech Ageing Dev. 1982 Dec;20(4):377–383. doi: 10.1016/0047-6374(82)90105-1. [DOI] [PubMed] [Google Scholar]
- Spector I., Prives J. M. Development of electrophysiological and biochemical membrane properties during differentiation of embryonic skeletal muscle in culture. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5166–5170. doi: 10.1073/pnas.74.11.5166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trautmann A., Delaporte C., Marty A. Voltage-dependent channels of human muscle cultures. Pflugers Arch. 1986 Feb;406(2):163–172. doi: 10.1007/BF00586678. [DOI] [PubMed] [Google Scholar]
- Walsh F. S., Ritter M. A. Surface antigen differentiation during human myogenesis in culture. Nature. 1981 Jan 1;289(5793):60–64. doi: 10.1038/289060a0. [DOI] [PubMed] [Google Scholar]
- Weiss R. E., Horn R. Functional differences between two classes of sodium channels in developing rat skeletal muscle. Science. 1986 Jul 18;233(4761):361–364. doi: 10.1126/science.2425432. [DOI] [PubMed] [Google Scholar]
- Yasin R., Van Beers G., Nurse K. C., Al-Ani S., Landon D. N., Thompson E. J. A quantitative technique for growing human adult skeletal muscle in culture starting from mononucleated cells. J Neurol Sci. 1977 Jul;32(3):347–360. doi: 10.1016/0022-510x(77)90018-1. [DOI] [PubMed] [Google Scholar]
- Zemková H., Vyskocil F., Tolar M., Vlachová V., Ujec E. Single K+ currents during differentiation of embryonic muscle cells in vitro. Biochim Biophys Acta. 1989 Nov 17;986(1):146–150. doi: 10.1016/0005-2736(89)90284-8. [DOI] [PubMed] [Google Scholar]