Abstract
Phosphatidylcholines or C(X):C(Y)PC, quantitatively the most abundant lipids in animal cell membranes, are structurally composed of two parts: a headgroup and a diglyceride. The diglyceride moiety consists of the glycerol backbone and two acyl chains. It is the wide diversity of the acyl chains, or the large variations in X and Y in C(X):C(Y)PC, that makes the family of phosphatidylcholines an extremely complex mixture of different molecular species. Since most of the physical properties of phospholipids with the same headgroup depend strongly on the structures of the lipid acyl chains, the energy-minimized structure and steric energy of each diglyceride moiety of a series of 14 molecular species of phosphatidylcholines with molecular weights identical to that of dimyristoylphosphatidylcholine without the headgroup are determined in this communication by molecular mechanics (MM) calculations. Results of two types of trans-bilayer dimer for each of the 14 molecular species of phosphatidylcholines are also presented; specifically, the dimeric structures are constructed initially based on the partially interdigitated and mixed interdigitated packing motifs followed subsequently by the energy-minimized refinement with MM calculations. Finally, tetramers with various structures to model the lateral lipid-lipid interactions in a lipid bilayer are considered. Results of laborious MM calculations show that saturated diacyl C(X):C(Y)PC with delta C/CL values greater than 0.41 prefer topologically to assemble into tetramers of the mixed interdigitated motif, and those with delta C/CL values less than 0.41 prefer to assemble into tetramers with a repertoire of the partially interdigitated motif. Here, delta C/CL, a lipid asymmetry parameter, is defined as the normalized acyl chain length difference between the sn-1 and sn-2 acyl chains for a C(X):C(Y)PC molecule; an increase in delta C/CL value is an indication of increasing asymmetry between the two lipid acyl chains. These computational results are in complete accord with the calorimetric data presented previously from this laboratory (H-n. Lin, Z-q. Wang, and C. Huang. 1991. Biochim. Biophys. Acta. 1067:17-28).
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bultmann T., Lin H. N., Wang Z. Q., Huang C. H. Thermotropic and mixing behavior of mixed-chain phosphatidylcholines with molecular weights identical with that of L-alpha-dipalmitoylphosphatidylcholine. Biochemistry. 1991 Jul 23;30(29):7194–7202. doi: 10.1021/bi00243a022. [DOI] [PubMed] [Google Scholar]
- Huang C. H. A structural model for the cholesterol-phosphatidylcholine complexes in bilayer membranes. Lipids. 1977 Apr;12(4):348–356. doi: 10.1007/BF02533637. [DOI] [PubMed] [Google Scholar]
- Huang C., Li S., Wang Z. Q., Lin H. N. Dependence of the bilayer phase transition temperatures on the structural parameters of phosphatidylcholines. Lipids. 1993 May;28(5):365–370. doi: 10.1007/BF02535931. [DOI] [PubMed] [Google Scholar]
- Huang C. Mixed-chain phospholipids and interdigitated bilayer systems. Klin Wochenschr. 1990 Feb 1;68(3):149–165. doi: 10.1007/BF01649079. [DOI] [PubMed] [Google Scholar]
- Huang C., Wang Z. Q., Lin H. N., Brumbaugh E. E. Calorimetric studies of fully hydrated phosphatidylcholines with highly asymmetric acyl chains. Biochim Biophys Acta. 1993 Feb 9;1145(2):298–310. doi: 10.1016/0005-2736(93)90303-h. [DOI] [PubMed] [Google Scholar]
- Hui S. W., Mason J. T., Huang C. Acyl chain interdigitation in saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry. 1984 Nov 6;23(23):5570–5577. doi: 10.1021/bi00318a029. [DOI] [PubMed] [Google Scholar]
- Lewis R. N., McElhaney R. N. Structures of the subgel phases of n-saturated diacyl phosphatidylcholine bilayers: FTIR spectroscopic studies of 13C = O and 2H labeled lipids. Biophys J. 1992 Jan;61(1):63–77. doi: 10.1016/S0006-3495(92)81816-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin H. N., Wang Z. Q., Huang C. H. Differential scanning calorimetry study of mixed-chain phosphatidylcholines with a common molecular weight identical with diheptadecanoylphosphatidylcholine. Biochemistry. 1990 Jul 31;29(30):7063–7072. doi: 10.1021/bi00482a017. [DOI] [PubMed] [Google Scholar]
- Lin H. N., Wang Z. Q., Huang C. H. The influence of acyl chain-length asymmetry on the phase transition parameters of phosphatidylcholine dispersions. Biochim Biophys Acta. 1991 Aug 5;1067(1):17–28. doi: 10.1016/0005-2736(91)90021-y. [DOI] [PubMed] [Google Scholar]
- Mason J. T., Huang C., Biltonen R. L. Calorimetric investigations of saturated mixed-chain phosphatidylcholine bilayer dispersions. Biochemistry. 1981 Oct 13;20(21):6086–6092. doi: 10.1021/bi00524a026. [DOI] [PubMed] [Google Scholar]
- Mattai J., Sripada P. K., Shipley G. G. Mixed-chain phosphatidylcholine bilayers: structure and properties. Biochemistry. 1987 Jun 16;26(12):3287–3297. doi: 10.1021/bi00386a007. [DOI] [PubMed] [Google Scholar]
- McIntosh T. J., Simon S. A., Ellington J. C., Jr, Porter N. A. New structural model for mixed-chain phosphatidylcholine bilayers. Biochemistry. 1984 Aug 28;23(18):4038–4044. doi: 10.1021/bi00313a005. [DOI] [PubMed] [Google Scholar]
- Nambi P., Rowe E. S., McIntosh T. J. Studies of the ethanol-induced interdigitated gel phase in phosphatidylcholines using the fluorophore 1,6-diphenyl-1,3,5-hexatriene. Biochemistry. 1988 Dec 27;27(26):9175–9182. doi: 10.1021/bi00426a015. [DOI] [PubMed] [Google Scholar]
- Ohki K., Tamura K., Hatta I. Ethanol induces interdigitated gel phase (L beta I) between lamellar gel phase (L beta') and ripple phase (P beta') in phosphatidylcholine membranes: a scanning density meter study. Biochim Biophys Acta. 1990 Oct 19;1028(3):215–222. doi: 10.1016/0005-2736(90)90169-o. [DOI] [PubMed] [Google Scholar]
- Pascher I., Lundmark M., Nyholm P. G., Sundell S. Crystal structures of membrane lipids. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):339–373. doi: 10.1016/0304-4157(92)90006-v. [DOI] [PubMed] [Google Scholar]
- Pearson R. H., Pascher I. The molecular structure of lecithin dihydrate. Nature. 1979 Oct 11;281(5731):499–501. doi: 10.1038/281499a0. [DOI] [PubMed] [Google Scholar]
- Shah J., Sripada P. K., Shipley G. G. Structure and properties of mixed-chain phosphatidylcholine bilayers. Biochemistry. 1990 May 1;29(17):4254–4262. doi: 10.1021/bi00469a030. [DOI] [PubMed] [Google Scholar]
- Sisk R. B., Wang Z. Q., Lin H. N., Huang C. H. Mixing behavior of identical molecular weight phosphatidylcholines with various chain-length differences in two-component lamellae. Biophys J. 1990 Sep;58(3):777–783. doi: 10.1016/S0006-3495(90)82420-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater J. L., Huang C. H., Levin I. W. Interdigitated bilayer packing motifs: Raman spectroscopic studies of the eutectic phase behavior of the 1-stearoyl-2-caprylphosphatidylcholine/dimyristoylphosphatidylcholine binary mixture. Biochim Biophys Acta. 1992 May 21;1106(2):242–250. doi: 10.1016/0005-2736(92)90002-4. [DOI] [PubMed] [Google Scholar]
- Vanderkooi G. Multibilayer structure of dimyristoylphosphatidylcholine dihydrate as determined by energy minimization. Biochemistry. 1991 Nov 5;30(44):10760–10768. doi: 10.1021/bi00108a022. [DOI] [PubMed] [Google Scholar]
- Wang Z. Q., Lin H. N., Huang C. H. Differential scanning calorimetric study of a homologous series of fully hydrated saturated mixed-chain C(X):C(X + 6) phosphatidylcholines. Biochemistry. 1990 Jul 31;29(30):7072–7076. doi: 10.1021/bi00482a018. [DOI] [PubMed] [Google Scholar]
- Zhu T., Caffrey M. Thermodynamic, thermomechanical, and structural properties of a hydrated asymmetric phosphatidylcholine. Biophys J. 1993 Aug;65(2):939–954. doi: 10.1016/S0006-3495(93)81108-1. [DOI] [PMC free article] [PubMed] [Google Scholar]


