Abstract
The renal clearance of [3H]dextran sulphate by the isolated perfused rat kidney was associated with desulphation of the molecule, as demonstrated by ion-exchange and affinity chromatography of material resident in both glomeruli and urine samples. This process also occurred in vivo. The molecular size distribution of glomerular dextran sulphate in the perfused kidney was indistinguishable from that in the perfusate, and although urinary material was smaller it remained macromolecular. Sulphatase activity was not detected in urine or in the perfusate of perfused kidneys, but was detected in glomerular and non-glomerular cortex fractions isolated by a sieving procedure. The identification of significant biochemical changes to dextran sulphate demonstrates that it does not function as an inert transport probe, and supports the concept of cellular involvement in the process of renal charge selectivity.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bertolatus J. A., Klinzman D. Macromolecular sieving by glomerular basement membrane in vitro: effect of polycation or biochemical modifications. Microvasc Res. 1991 May;41(3):311–327. doi: 10.1016/0026-2862(91)90031-6. [DOI] [PubMed] [Google Scholar]
- Bray J., Robinson G. B. Influence of charge on filtration across renal basement membrane films in vitro. Kidney Int. 1984 Mar;25(3):527–533. doi: 10.1038/ki.1984.49. [DOI] [PubMed] [Google Scholar]
- Bârzu T., Molho P., Tobelem G., Petitou M., Caen J. Binding and endocytosis of heparin by human endothelial cells in culture. Biochim Biophys Acta. 1985 May 30;845(2):196–203. doi: 10.1016/0167-4889(85)90177-6. [DOI] [PubMed] [Google Scholar]
- Chang R. L., Deen W. M., Robertson C. R., Brenner B. M. Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions. Kidney Int. 1975 Oct;8(4):212–218. doi: 10.1038/ki.1975.104. [DOI] [PubMed] [Google Scholar]
- Comper W. D., Lee A. S., Tay M., Adal Y. Anionic charge concentration of rat kidney glomeruli and glomerular basement membrane. Biochem J. 1993 Feb 1;289(Pt 3):647–652. doi: 10.1042/bj2890647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawes J. Measurement of the affinities of heparins, naturally occurring glycosaminoglycans, and other sulfated polymers for antithrombin III and thrombin. Anal Biochem. 1988 Oct;174(1):177–186. doi: 10.1016/0003-2697(88)90533-7. [DOI] [PubMed] [Google Scholar]
- Dawes J., Papper D. S. Catabolism of low-dose heparin in man. Thromb Res. 1979;14(6):845–860. doi: 10.1016/0049-3848(79)90004-5. [DOI] [PubMed] [Google Scholar]
- Dawes J., Pepper D. S. Human vascular endothelial cells catabolise exogenous glycosaminoglycans by a novel route. Thromb Haemost. 1992 Apr 2;67(4):468–472. [PubMed] [Google Scholar]
- Dawes J., Prowse C. V., Pepper D. S. The measurement of heparin and other therapeutic sulphated polysaccharides in plasma, serum and urine. Thromb Haemost. 1985 Oct 30;54(3):630–634. [PubMed] [Google Scholar]
- Deen W. M., Satvat B., Jamieson J. M. Theoretical model for glomerular filtration of charged solutes. Am J Physiol. 1980 Feb;238(2):F126–F139. doi: 10.1152/ajprenal.1980.238.2.F126. [DOI] [PubMed] [Google Scholar]
- Fox B. W. The application of Triton X 100 colloid scintillation counting in biochemistry. Int J Appl Radiat Isot. 1968 Oct;19(10):717–730. doi: 10.1016/0020-708x(68)90109-9. [DOI] [PubMed] [Google Scholar]
- Hiebert L. M., McDuffie N. M. The intracellular uptake and protracted release of exogenous heparins by cultured endothelial cells. Artery. 1989;16(4):208–222. [PubMed] [Google Scholar]
- MacGregor I. R., Dawes J., Paton L., Pepper D. S., Prowse C. V., Smith M. Metabolism of sodium pentosan polysulphate in man--catabolism of iodinated derivatives. Thromb Haemost. 1984 Jul 29;51(3):321–325. [PubMed] [Google Scholar]
- Spiro R. G. Studies on the renal glomerular basement membrane. Preparation and chemical composition. J Biol Chem. 1967 Apr 25;242(8):1915–1922. [PubMed] [Google Scholar]
- Tay M., Comper W. D., Singh A. K. Charge selectivity in kidney ultrafiltration is associated with glomerular uptake of transport probes. Am J Physiol. 1991 Apr;260(4 Pt 2):F549–F554. doi: 10.1152/ajprenal.1991.260.4.F549. [DOI] [PubMed] [Google Scholar]
- Zamparo O., Comper W. D. Model anionic polysaccharide matrices exhibit lower charge selectivity than is normally associated with kidney ultrafiltration. Biophys Chem. 1990 Oct;38(1-2):167–178. doi: 10.1016/0301-4622(90)80052-9. [DOI] [PubMed] [Google Scholar]
