Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Jun 15;292(Pt 3):643–646. doi: 10.1042/bj2920643

Sub-second oscillations of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate during platelet activation by ADP and thrombin: lack of correlation with calcium kinetics.

S Raha 1, G D Jones 1, A R Gear 1
PMCID: PMC1134161  PMID: 8317994

Abstract

The hypothesis that ADP and thrombin liberate Ins(1,4,5)P3 in blood platelets, with kinetics consistent for releasing Ca2+ within 2s, was tested by quenched-flow techniques. Both agonists stimulated transient and equal synthesis of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 near 200 ms and later short-lived peaks, which were not correlated with the slower steady increase in intracellular [Ca2+] between 0.5 to 2 s detected by Indo-1. Shear forces alone caused transient liberation of these inositol phosphates within 0.5 s and up to 4 s, yet failed to increase intracellular [Ca2+].

Full text

PDF
643

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Authi K. S., Hughes K., Crawford N. High incorporation of [3H]inositol into phosphoinositides of human platelets during reversible electropermeabilisation. FEBS Lett. 1989 Aug 28;254(1-2):52–58. doi: 10.1016/0014-5793(89)81008-7. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Cytoplasmic calcium oscillations: a two pool model. Cell Calcium. 1991 Feb-Mar;12(2-3):63–72. doi: 10.1016/0143-4160(91)90009-4. [DOI] [PubMed] [Google Scholar]
  3. Breer H., Boekhoff I., Tareilus E. Rapid kinetics of second messenger formation in olfactory transduction. Nature. 1990 May 3;345(6270):65–68. doi: 10.1038/345065a0. [DOI] [PubMed] [Google Scholar]
  4. Carty D. J., Freas D. L., Gear A. R. ADP causes subsecond changes in protein phosphorylation of platelets. Blood. 1987 Aug;70(2):511–515. [PubMed] [Google Scholar]
  5. Carty D. J., Spielberg F., Gear A. R. Thrombin causes subsecond changes in protein phosphorylation of platelets. Blood. 1986 Jun;67(6):1738–1743. [PubMed] [Google Scholar]
  6. Cunningham T. W., Lips D. L., Bansal V. S., Caldwell K. K., Mitchell C. A., Majerus P. W. Pathway for the formation of D-3 phosphate containing inositol phospholipids in intact human platelets. J Biol Chem. 1990 Dec 15;265(35):21676–21683. [PubMed] [Google Scholar]
  7. Daniel J. L., Dangelmaier C. A., Selak M., Smith J. B. ADP stimulates IP3 formation in human platelets. FEBS Lett. 1986 Oct 6;206(2):299–303. doi: 10.1016/0014-5793(86)81000-6. [DOI] [PubMed] [Google Scholar]
  8. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  9. Feliste R., Simon M. F., Chap H., Douste-Blazy L., Defreyn G., Maffrand J. P. Effect of PCR 4099 on ADP-induced calcium movements and phosphatidic acid production in rat platelets. Biochem Pharmacol. 1988 Jul 1;37(13):2559–2564. doi: 10.1016/0006-2952(88)90246-8. [DOI] [PubMed] [Google Scholar]
  10. Fisher G. J., Bakshian S., Baldassare J. J. Activation of human platelets by ADP causes a rapid rise in cytosolic free calcium without hydrolysis of phosphatidylinositol-4,5-bisphosphate. Biochem Biophys Res Commun. 1985 Jun 28;129(3):958–964. doi: 10.1016/0006-291x(85)91984-9. [DOI] [PubMed] [Google Scholar]
  11. Gear A. R. Rapid platelet morphological changes visualized by scanning-electron microscopy: kinetics derived from a quenched-flow approach. Br J Haematol. 1984 Mar;56(3):387–398. doi: 10.1111/j.1365-2141.1984.tb03969.x. [DOI] [PubMed] [Google Scholar]
  12. Gear A. R. Rapid reactions of platelets studied by a quenched-flow approach: aggregation kinetics. J Lab Clin Med. 1982 Dec;100(6):866–886. [PubMed] [Google Scholar]
  13. Harootunian A. T., Kao J. P., Paranjape S., Tsien R. Y. Generation of calcium oscillations in fibroblasts by positive feedback between calcium and IP3. Science. 1991 Jan 4;251(4989):75–78. doi: 10.1126/science.1986413. [DOI] [PubMed] [Google Scholar]
  14. Irvine R. F. Inositol lipids in cell signalling. Curr Opin Cell Biol. 1992 Apr;4(2):212–219. doi: 10.1016/0955-0674(92)90035-b. [DOI] [PubMed] [Google Scholar]
  15. Johnson R. M., Wasilenko W. J., Mattingly R. R., Weber M. J., Garrison J. C. Fibroblasts transformed with v-src show enhanced formation of an inositol tetrakisphosphate. Science. 1989 Oct 6;246(4926):121–124. doi: 10.1126/science.2506643. [DOI] [PubMed] [Google Scholar]
  16. Jones G. D., Gear A. R. Subsecond calcium dynamics in ADP- and thrombin-stimulated platelets: a continuous-flow approach using indo-1. Blood. 1988 Jun;71(6):1539–1543. [PubMed] [Google Scholar]
  17. King W. G., Rittenhouse S. E. Inhibition of protein kinase C by staurosporine promotes elevated accumulations of inositol trisphosphates and tetrakisphosphate in human platelets exposed to thrombin. J Biol Chem. 1989 Apr 15;264(11):6070–6074. [PubMed] [Google Scholar]
  18. Lloyd J. V., Nishizawa E. E., Joist J. H., Mustard J. F. Effect of ADP-induced aggregation on 32 PO 4 incorporation into phosphatidic acid and the phosphoinositides of rabbit platelets. Br J Haematol. 1973 May;24(5):589–604. doi: 10.1111/j.1365-2141.1973.tb01685.x. [DOI] [PubMed] [Google Scholar]
  19. Loomis-Husselbee J. W., Cullen P. J., Irvine R. F., Dawson A. P. Electroporation can cause artefacts due to solubilization of cations from the electrode plates. Aluminum ions enhance conversion of inositol 1,3,4,5-tetrakisphosphate into inositol 1,4,5-trisphosphate in electroporated L1210 cells. Biochem J. 1991 Aug 1;277(Pt 3):883–885. doi: 10.1042/bj2770883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Missiaen L., Taylor C. W., Berridge M. J. Spontaneous calcium release from inositol trisphosphate-sensitive calcium stores. Nature. 1991 Jul 18;352(6332):241–244. doi: 10.1038/352241a0. [DOI] [PubMed] [Google Scholar]
  21. Murphy C. T., Elmore M., Kellie S., Westwick J. The relationship between cytosolic Ca2+, sn-1,2-diacylglycerol and inositol 1,4,5-trisphosphate elevation in platelet-activating-factor-stimulated rabbit platelets. Influence of protein kinase C on production of signal molecules. Biochem J. 1991 Aug 15;278(Pt 1):255–261. doi: 10.1042/bj2780255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nakashima S., Suganuma A., Matsui A., Nozawa Y. Thrombin induces a biphasic 1,2-diacylglycerol production in human platelets. Biochem J. 1991 Apr 15;275(Pt 2):355–361. doi: 10.1042/bj2750355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rittenhouse-Simmons S. Production of diglyceride from phosphatidylinositol in activated human platelets. J Clin Invest. 1979 Apr;63(4):580–587. doi: 10.1172/JCI109339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sage S. O., Reast R., Rink T. J. ADP evokes biphasic Ca2+ influx in fura-2-loaded human platelets. Evidence for Ca2+ entry regulated by the intracellular Ca2+ store. Biochem J. 1990 Feb 1;265(3):675–680. doi: 10.1042/bj2650675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sage S. O., Rink T. J. The kinetics of changes in intracellular calcium concentration in fura-2-loaded human platelets. J Biol Chem. 1987 Dec 5;262(34):16364–16369. [PubMed] [Google Scholar]
  26. Shears S. B. Metabolism of the inositol phosphates produced upon receptor activation. Biochem J. 1989 Jun 1;260(2):313–324. doi: 10.1042/bj2600313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sorisky A., King W. G., Rittenhouse S. E. Accumulation of PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in thrombin-stimulated platelets. Different sensitivities to Ca2+ or functional integrin. Biochem J. 1992 Sep 1;286(Pt 2):581–584. doi: 10.1042/bj2860581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sweatt J. D., Blair I. A., Cragoe E. J., Limbird L. E. Inhibitors of Na+/H+ exchange block epinephrine- and ADP-induced stimulation of human platelet phospholipase C by blockade of arachidonic acid release at a prior step. J Biol Chem. 1986 Jul 5;261(19):8660–8666. [PubMed] [Google Scholar]
  29. Vickers J. D., Kinlough-Rathbone R. L., Mustard J. F. The decrease in phosphatidylinositol 4,5-bisphosphate in ADP-stimulated washed rabbit platelets is not primarily due to phospholipase C activation. Biochem J. 1986 Jul 15;237(2):327–332. doi: 10.1042/bj2370327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vickers J. D., Kinlough-Rathbone R. L., Packham M. A., Mustard J. F. Inositol phospholipid metabolism in human platelets stimulated by ADP. Eur J Biochem. 1990 Oct 24;193(2):521–528. doi: 10.1111/j.1432-1033.1990.tb19367.x. [DOI] [PubMed] [Google Scholar]
  31. Werner M. H., Bielawska A. E., Hannun Y. A. Multiphasic generation of diacylglycerol in thrombin-activated human platelets. Biochem J. 1992 Mar 15;282(Pt 3):815–820. doi: 10.1042/bj2820815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Werner M. H., Bielawska A. E., Hannun Y. A. Quantitative analysis of diacylglycerol second messengers in human platelets: correlation with aggregation and secretion. Mol Pharmacol. 1992 Feb;41(2):382–386. [PubMed] [Google Scholar]
  33. Yatomi Y., Ozaki Y., Kume S. Synthesis of phosphatidylinositol 3,4-bisphosphate but not phosphatidylinositol 3,4,5-trisphosphate is closely correlated with protein-tyrosine phosphorylation in thrombin-activated human platelets. Biochem Biophys Res Commun. 1992 Aug 14;186(3):1480–1486. doi: 10.1016/s0006-291x(05)81573-6. [DOI] [PubMed] [Google Scholar]
  34. Zavoico G. B., Halenda S. P., Sha'afi R. I., Feinstein M. B. Phorbol myristate acetate inhibits thrombin-stimulated Ca2+ mobilization and phosphatidylinositol 4,5-bisphosphate hydrolysis in human platelets. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3859–3862. doi: 10.1073/pnas.82.11.3859. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES