Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1993 Apr;61(4):1251–1258. doi: 10.1128/iai.61.4.1251-1258.1993

Safety and immunogenicity in human volunteers of a chloroform-methanol residue vaccine for Q fever.

L F Fries 1, D M Waag 1, J C Williams 1
PMCID: PMC281355  PMID: 8454328

Abstract

Current Q fever vaccines, consisting of Formalin-inactivated phase I whole Coxiella burnetii, are highly efficacious in preventing disease in high-risk settings but are associated with a risk of unacceptable local reactions in previously immune individuals and require cumbersome preliminary immunologic evaluation of potential vaccinees. A vaccine prepared from the residue of chloroform-methanol extraction of phase I Henzerling strain C. burnetii (CMR) has been shown to be less reactogenic but still immunogenic and protective in small animals and sheep. In a placebo-controlled trial, we immunized 35 healthy adults unscreened for markers of prior C. burnetii immunity with a single subcutaneous CMR dose of 30, 60, 120, or 240 micrograms. None of those receiving the 30- or 60-micrograms CMR dose and none of the placebo recipients experienced any adverse effects. Five of 15 120-micrograms dose CMR recipients complained of transient discomfort in the inoculated arm; erythema or induration of > or = 100 mm2 was noted in three and four, respectively, and two had malaise and low-grade fever (< 101 degrees F, orally). No 240-micrograms dose vaccinee reported limb discomfort, but 7 of 10 had erythema and/or induration of > or = 100 mm2 (P < 0.001 versus placebo). Two reported malaise, and one had low-grade fever. All adverse effects were self-limited. Serum immunoglobulin M responses were optimally detected with CMR antigen and occurred in 50, 60, 73, and 90% of recipients of the 30-, 60-, 120-, and 240-micrograms doses, respectively; results with phase I whole-cell antigen were similar. Serum immunoglobulin G responses were best detected with phase II antigen and were seen in 20, 20, and 40% of those receiving the 60-, 120-, and 240-micrograms doses, respectively. Peripheral blood T-cell proliferative responses to C. burnetii recall antigens were transient and of low magnitude but were seen with CMR antigen in 33% of 120-micrograms dose recipients and 40% of 240-micrograms dose recipients. Data from this study and those from comparative-efficacy trials in primates should provide the basis for field trials of the CMR vaccine.

Full text

PDF
1251

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano K., Williams J. C. Chemical and immunological characterization of lipopolysaccharides from phase I and phase II Coxiella burnetii. J Bacteriol. 1984 Dec;160(3):994–1002. doi: 10.1128/jb.160.3.994-1002.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ascher M. S., Berman M. A., Ruppanner R. Initial clinical and immunologic evaluation of a new phase I Q fever vaccine and skin test in humans. J Infect Dis. 1983 Aug;148(2):214–222. doi: 10.1093/infdis/148.2.214. [DOI] [PubMed] [Google Scholar]
  3. Ascher M. S., Williams J. C., Berman M. A. Dermal granulomatous hypersensitivity in Q fever: comparative studies of the granulomatous potential of whole cells of Coxiella burnetii phase I and subfractions. Infect Immun. 1983 Dec;42(3):887–889. doi: 10.1128/iai.42.3.887-889.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beher M., Pugsley A., Schnaitman C. Correlation between the expression of an Escherichia coli cell surface protein and the ability of the protein to bind to lipopolysaccharide. J Bacteriol. 1980 Jul;143(1):403–410. doi: 10.1128/jb.143.1.403-410.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brooks D. L., Ermel R. W., Franti C. E., Ruppanner R., Behymer D. E., Williams J. C., Stephenson E. H., Stephenson J. C. Q fever vaccination of sheep: challenge of immunity in ewes. Am J Vet Res. 1986 Jun;47(6):1235–1238. [PubMed] [Google Scholar]
  6. Dumler J. S., Wisseman C. L., Jr, Fiset P., Clements M. L. Cell-mediated immune responses of adults to vaccination, challenge with Rickettsia rickettsii, or both. Am J Trop Med Hyg. 1992 Feb;46(2):105–115. doi: 10.4269/ajtmh.1992.46.105. [DOI] [PubMed] [Google Scholar]
  7. Hackstadt T. The role of lipopolysaccharides in the virulence of Coxiella burnetii. Ann N Y Acad Sci. 1990;590:27–32. doi: 10.1111/j.1749-6632.1990.tb42203.x. [DOI] [PubMed] [Google Scholar]
  8. Hinrichs D. J., Jerrells T. R. In vitro evaluation of immunity to Coxiella burnetii. J Immunol. 1976 Sep;117(3):996–1003. [PubMed] [Google Scholar]
  9. Izzo A. A., Marmion B. P., Hackstadt T. Analysis of the cells involved in the lymphoproliferative response to Coxiella burnetii antigens. Clin Exp Immunol. 1991 Jul;85(1):98–108. doi: 10.1111/j.1365-2249.1991.tb05689.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Izzo A. A., Marmion B. P., Worswick D. A. Markers of cell-mediated immunity after vaccination with an inactivated, whole-cell Q fever vaccine. J Infect Dis. 1988 Apr;157(4):781–789. doi: 10.1093/infdis/157.4.781. [DOI] [PubMed] [Google Scholar]
  11. Kazár J., El-Najdawi E., Brezina R., Schramek S. Search for correlates of resistance to virulent challenge in mice immunized with Coxiella burnetii. Acta Virol. 1977 Sep;21(5):422–430. [PubMed] [Google Scholar]
  12. Kishimoto R. A., Johnson J. W., Kenyon R. H., Ascher M. S., Larson E. W., Pedersen C. E., Jr Cell-mediated immune responses of guinea pigs to an inactivated phase I Coxiella burnetii vaccine. Infect Immun. 1978 Jan;19(1):194–198. doi: 10.1128/iai.19.1.194-198.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kishimoto R. A., Rozmiarek H., Larson E. W. Experimental Q fever infection in congenitally athymic nude mice. Infect Immun. 1978 Oct;22(1):69–71. doi: 10.1128/iai.22.1.69-71.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koster F. T., Williams J. C., Goodwin J. S. Cellular immunity in Q fever: modulation of responsiveness by a suppressor T cell-monocyte circuit. J Immunol. 1985 Aug;135(2):1067–1072. [PubMed] [Google Scholar]
  15. LUOTO L., BELL J. F., CASEY M., LACKMAN D. B. Q FEVER VACCINATION OF HUMAN VOLUNTEERS. I. THE SEROLOGIC AND SKIN-TEST RESPONSE FOLLOWING SUBCUTANEOUS INJECTIONS. Am J Hyg. 1963 Jul;78:1–15. [PubMed] [Google Scholar]
  16. Marmion B. P., Ormsbee R. A., Kyrkou M., Wright J., Worswick D. A., Izzo A. A., Esterman A., Feery B., Shapiro R. A. Vaccine prophylaxis of abattoir-associated Q fever: eight years' experience in Australian abattoirs. Epidemiol Infect. 1990 Apr;104(2):275–287. doi: 10.1017/s0950268800059458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCaul T. F., Williams J. C. Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol. 1981 Sep;147(3):1063–1076. doi: 10.1128/jb.147.3.1063-1076.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. ORMSBEE R. A., BELL E. J., LACKMAN D. B., TALLENT G. THE INFLUENCE OF PHASE ON THE PROTECTIVE POTENCY OF Q FEVER VACCINE. J Immunol. 1964 Mar;92:404–412. [PubMed] [Google Scholar]
  19. Raoult D. Antibiotic susceptibility of rickettsia and treatment of rickettsioses. Eur J Epidemiol. 1989 Dec;5(4):432–435. doi: 10.1007/BF00140135. [DOI] [PubMed] [Google Scholar]
  20. Scott G. H., Williams J. C., Stephenson E. H. Animal models in Q fever: pathological responses of inbred mice to phase I Coxiella burnetii. J Gen Microbiol. 1987 Mar;133(3):691–700. doi: 10.1099/00221287-133-3-691. [DOI] [PubMed] [Google Scholar]
  21. Shapiro R. A., Siskind V., Schofield F. D., Stallman N., Worswick D. A., Marmion B. P. A randomized, controlled, double-blind, cross-over, clinical trial of Q fever vaccine in selected Queensland abattoirs. Epidemiol Infect. 1990 Apr;104(2):267–273. doi: 10.1017/s0950268800059446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steinhoff M. C., Halsey N. A., Fries L. F., Wilson M. H., King J., Burns B. A., Samorodin R. K., Perkis V., Murphy B. R., Clements M. L. The A/Mallard/6750/78 avian-human, but not the A/Ann Arbor/6/60 cold-adapted, influenza A/Kawasaki/86 (H1N1) reassortant virus vaccine retains partial virulence for infants and children. J Infect Dis. 1991 May;163(5):1023–1028. doi: 10.1093/infdis/163.5.1023. [DOI] [PubMed] [Google Scholar]
  23. Waag D. M., Williams J. C. Immune modulation by Coxiella burnetii: characterization of a phase I immunosuppressive complex differentially expressed among strains. Immunopharmacol Immunotoxicol. 1988;10(2):231–260. doi: 10.3109/08923978809014335. [DOI] [PubMed] [Google Scholar]
  24. Williams J. C., Cantrell J. L. Biological and immunological properties of Coxiella burnetii vaccines in C57BL/10ScN endotoxin-nonresponder mice. Infect Immun. 1982 Mar;35(3):1091–1102. doi: 10.1128/iai.35.3.1091-1102.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Williams J. C., Damrow T. A., Waag D. M., Amano K. Characterization of a phase I Coxiella burnetii chloroform-methanol residue vaccine that induces active immunity against Q fever in C57BL/10 ScN mice. Infect Immun. 1986 Mar;51(3):851–858. doi: 10.1128/iai.51.3.851-858.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Williams J. C., Johnston M. R., Peacock M. G., Thomas L. A., Stewart S., Portis J. L. Monoclonal antibodies distinguish phase variants of Coxiella burnetii. Infect Immun. 1984 Jan;43(1):421–428. doi: 10.1128/iai.43.1.421-428.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Williams J. C., Peacock M. G., Waag D. M., Kent G., England M. J., Nelson G., Stephenson E. H. Vaccines against coxiellosis and Q fever. Development of a chloroform:methanol residue subunit of phase I Coxiella burnetti for the immunization of animals. Ann N Y Acad Sci. 1992 Jun 16;653:88–111. doi: 10.1111/j.1749-6632.1992.tb19633.x. [DOI] [PubMed] [Google Scholar]
  28. Yeaman M. R., Mitscher L. A., Baca O. G. In vitro susceptibility of Coxiella burnetii to antibiotics, including several quinolones. Antimicrob Agents Chemother. 1987 Jul;31(7):1079–1084. doi: 10.1128/aac.31.7.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES