Abstract
1. The effect of the nitric oxide synthase inhibitor, NG-nitro-L-arginine (L-NOARG), on endothelium-dependent relaxation to a receptor-independent agent, ionomycin, was examined in isolated pulmonary arteries and veins from control, short-term and chronic pulmonary hypertensive sheep. All vessel segments were contracted to optimal levels of active force with endothelin-1 to record endothelium-dependent relaxation. 2. Pulmonary hypertension was induced by continuous pulmonary artery air embolization for 1 day (short-term) and 14 days (chronic) and was associated with a 2 and 3 fold increase in pulmonary vascular resistance respectively. 3. L-NOARG (0.1 mM) reduced the maximum relaxation (Rmax) to ionomycin in large and medium-sized pulmonary arteries from control sheep by approximately 70%. By contrast, L-NOARG (0.1 mM) did not inhibit the Rmax to ionomycin in matched vessels from short-term and chronic pulmonary hypertensive sheep. 4. Resistance of ionomycin-induced relaxations to inhibition by L-NOARG, was confined to the arterial vasculature in chronic pulmonary hypertensive animals, as relaxations to ionomycin in large and medium-sized chronic pulmonary hypertensive veins were, like those in control veins, abolished by L-NOARG. Both large and medium-sized pulmonary veins from short-term pulmonary hypertensive sheep, however, were resistant to block by L-NOARG. 5. Neither sensitivity (pEC50) nor Rmax to ionomycin in large, short-term pulmonary hypertensive arteries was affected when the extracellular concentration of K+ was increased isotonically to 30 mM. Nifedipine (0.3 microM) was present throughout to prevent high K(+)-induced smooth muscle contraction. In the presence of this high extracellular K+, however, L-NOARG (0.1 mM) caused complete inhibition of the relaxation to ionomycin, whereas in normal extracellular K+ (4.7 mM), L-NOARG only weakly inhibited ionomycin relaxations. 6. In conclusion, the onset of pulmonary hypertension in sheep following air embolization, is associated with the development of resistance of endothelium-dependent relaxations to block by L-NOARG. The mechanism of L-NOARG resistance appears to be due to the up-regulation of a K+ channel-mediated backup vasodilator mechanism which can compensate for the loss of nitric oxide (NO)-mediated relaxation. Although this mechanism remains functionally 'silent' in the presence of NO it is able to maintain adequate endothelium-dependent vasodilatation during pulmonary hypertension if NO synthesis is compromised.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angus J. A., Cocks T. M. Endothelium-derived relaxing factor. Pharmacol Ther. 1989;41(1-2):303–352. doi: 10.1016/0163-7258(89)90112-5. [DOI] [PubMed] [Google Scholar]
- Angus J. A., Cocks T. M., Satoh K. Alpha 2-adrenoceptors and endothelium-dependent relaxation in canine large arteries. Br J Pharmacol. 1986 Aug;88(4):767–777. doi: 10.1111/j.1476-5381.1986.tb16249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beny J. L., Brunet P. C., Huggel H. Effect of mechanical stimulation, substance P and vasoactive intestinal polypeptide on the electrical and mechanical activities of circular smooth muscles from pig coronary arteries contracted with acetylcholine: role of endothelium. Pharmacology. 1986;33(2):61–68. doi: 10.1159/000138202. [DOI] [PubMed] [Google Scholar]
- Berczi V., Stekiel W. J., Contney S. J., Rusch N. J. Pressure-induced activation of membrane K+ current in rat saphenous artery. Hypertension. 1992 Jun;19(6 Pt 2):725–729. doi: 10.1161/01.hyp.19.6.725. [DOI] [PubMed] [Google Scholar]
- Bogle R. G., Moncada S., Pearson J. D., Mann G. E. Identification of inhibitors of nitric oxide synthase that do not interact with the endothelial cell L-arginine transporter. Br J Pharmacol. 1992 Apr;105(4):768–770. doi: 10.1111/j.1476-5381.1992.tb09053.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brayden J. E., Nelson M. T. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science. 1992 Apr 24;256(5056):532–535. doi: 10.1126/science.1373909. [DOI] [PubMed] [Google Scholar]
- Cetiner M., Bennett M. R. Nitric oxide modulation of calcium-activated potassium channels in postganglionic neurones of avian cultured ciliary ganglia. Br J Pharmacol. 1993 Nov;110(3):995–1002. doi: 10.1111/j.1476-5381.1993.tb13912.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen G., Suzuki H. Some electrical properties of the endothelium-dependent hyperpolarization recorded from rat arterial smooth muscle cells. J Physiol. 1989 Mar;410:91–106. doi: 10.1113/jphysiol.1989.sp017522. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen G., Suzuki H., Weston A. H. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol. 1988 Dec;95(4):1165–1174. doi: 10.1111/j.1476-5381.1988.tb11752.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen X., Gillis C. N. Effect of free radicals on pulmonary vascular response to acetylcholine. J Appl Physiol (1985) 1991 Sep;71(3):821–825. doi: 10.1152/jappl.1991.71.3.821. [DOI] [PubMed] [Google Scholar]
- Clapp L. H., Gurney A. M. Modulation of calcium movements by nitroprusside in isolated vascular smooth muscle cells. Pflugers Arch. 1991 Jun;418(5):462–470. doi: 10.1007/BF00497774. [DOI] [PubMed] [Google Scholar]
- Cocks T. M., Kemp B. K., Pruneau D., Angus J. A. Comparison of contractile responses to 5-hydroxytryptamine and sumatriptan in human isolated coronary artery: synergy with the thromboxane A2-receptor agonist, U46619. Br J Pharmacol. 1993 Sep;110(1):360–368. doi: 10.1111/j.1476-5381.1993.tb13818.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowan C. L., Palacino J. J., Najibi S., Cohen R. A. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries. J Pharmacol Exp Ther. 1993 Sep;266(3):1482–1489. [PubMed] [Google Scholar]
- Crawley D. E., Zhao L., Giembycz M. A., Liu S., Barnes P. J., Winter R. J., Evans T. W. Chronic hypoxia impairs soluble guanylyl cyclase-mediated pulmonary arterial relaxation in the rat. Am J Physiol. 1992 Sep;263(3 Pt 1):L325–L332. doi: 10.1152/ajplung.1992.263.3.L325. [DOI] [PubMed] [Google Scholar]
- Dinh Xuan A. T., Higenbottam T. W., Clelland C., Pepke-Zaba J., Cremona G., Wallwork J. Impairment of pulmonary endothelium-dependent relaxation in patients with Eisenmenger's syndrome. Br J Pharmacol. 1990 Jan;99(1):9–10. doi: 10.1111/j.1476-5381.1990.tb14643.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinh-Xuan A. T., Pepke-Zaba J., Butt A. Y., Cremona G., Higenbottam T. W. Impairment of pulmonary-artery endothelium-dependent relaxation in chronic obstructive lung disease is not due to dysfunction of endothelial cell membrane receptors nor to L-arginine deficiency. Br J Pharmacol. 1993 Jun;109(2):587–591. doi: 10.1111/j.1476-5381.1993.tb13611.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckman D. M., Weinert J. S., Buxton I. L., Keef K. D. Cyclic GMP-independent relaxation and hyperpolarization with acetylcholine in guinea-pig coronary artery. Br J Pharmacol. 1994 Apr;111(4):1053–1060. doi: 10.1111/j.1476-5381.1994.tb14851.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elghozi J. L., Head G. A. Spinal noradrenergic pathways and pressor responses to central angiotensin II. Am J Physiol. 1990 Jan;258(1 Pt 2):H240–H246. doi: 10.1152/ajpheart.1990.258.1.H240. [DOI] [PubMed] [Google Scholar]
- Fukushima M., Kobayashi T. Effects of thromboxane synthase inhibition on air emboli lung injury in sheep. J Appl Physiol (1985) 1986 Jun;60(6):1828–1833. doi: 10.1152/jappl.1986.60.6.1828. [DOI] [PubMed] [Google Scholar]
- Furfine E. S., Harmon M. F., Paith J. E., Garvey E. P. Selective inhibition of constitutive nitric oxide synthase by L-NG-nitroarginine. Biochemistry. 1993 Aug 24;32(33):8512–8517. doi: 10.1021/bi00084a017. [DOI] [PubMed] [Google Scholar]
- Garland C. J., McPherson G. A. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol. 1992 Feb;105(2):429–435. doi: 10.1111/j.1476-5381.1992.tb14270.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gryglewski R. J., Palmer R. M., Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986 Apr 3;320(6061):454–456. doi: 10.1038/320454a0. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol. 1991 Feb 15;41(4):485–490. doi: 10.1016/0006-2952(91)90618-f. [DOI] [PubMed] [Google Scholar]
- Ishikawa T., Hume J. R., Keef K. D. Regulation of Ca2+ channels by cAMP and cGMP in vascular smooth muscle cells. Circ Res. 1993 Dec;73(6):1128–1137. doi: 10.1161/01.res.73.6.1128. [DOI] [PubMed] [Google Scholar]
- Jackson W. F., König A., Dambacher T., Busse R. Prostacyclin-induced vasodilation in rabbit heart is mediated by ATP-sensitive potassium channels. Am J Physiol. 1993 Jan;264(1 Pt 2):H238–H243. doi: 10.1152/ajpheart.1993.264.1.H238. [DOI] [PubMed] [Google Scholar]
- Kilpatrick E. V., Cocks T. M. Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery. Br J Pharmacol. 1994 Jun;112(2):557–565. doi: 10.1111/j.1476-5381.1994.tb13110.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laher I., Hwa J., Bevan J. A. Calcium and vascular myogenic tone. Ann N Y Acad Sci. 1988;522:216–225. doi: 10.1111/j.1749-6632.1988.tb33359.x. [DOI] [PubMed] [Google Scholar]
- Langille B. L., O'Donnell F. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science. 1986 Jan 24;231(4736):405–407. doi: 10.1126/science.3941904. [DOI] [PubMed] [Google Scholar]
- Maruyama J., Maruyama K. Impaired nitric oxide-dependent responses and their recovery in hypertensive pulmonary arteries of rats. Am J Physiol. 1994 Jun;266(6 Pt 2):H2476–H2488. doi: 10.1152/ajpheart.1994.266.6.H2476. [DOI] [PubMed] [Google Scholar]
- Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
- Mulvany M. J., Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977 Jul;41(1):19–26. doi: 10.1161/01.res.41.1.19. [DOI] [PubMed] [Google Scholar]
- Mülsch A., Busse R. NG-nitro-L-arginine (N5-[imino(nitroamino)methyl]-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jan-Feb;341(1-2):143–147. doi: 10.1007/BF00195071. [DOI] [PubMed] [Google Scholar]
- Nagao T., Vanhoutte P. M. Hyperpolarization as a mechanism for endothelium-dependent relaxations in the porcine coronary artery. J Physiol. 1992 Jan;445:355–367. doi: 10.1113/jphysiol.1992.sp018928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oka M., Hasunuma K., Webb S. A., Stelzner T. J., Rodman D. M., McMurtry I. F. EDRF suppresses an unidentified vasoconstrictor mechanism in hypertensive rat lungs. Am J Physiol. 1993 Jun;264(6 Pt 1):L587–L597. doi: 10.1152/ajplung.1993.264.6.L587. [DOI] [PubMed] [Google Scholar]
- Orton E. C., Reeves J. T., Stenmark K. R. Pulmonary vasodilation with structurally altered pulmonary vessels and pulmonary hypertension. J Appl Physiol (1985) 1988 Dec;65(6):2459–2467. doi: 10.1152/jappl.1988.65.6.2459. [DOI] [PubMed] [Google Scholar]
- Pacicca C., von der Weid P. Y., Beny J. L. Effect of nitro-L-arginine on endothelium-dependent hyperpolarizations and relaxations of pig coronary arteries. J Physiol. 1992 Nov;457:247–256. doi: 10.1113/jphysiol.1992.sp019376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkett E. A., Brigham K. L., Meyrick B. Continuous air embolization into sheep causes sustained pulmonary hypertension and increased pulmonary vasoreactivity. Am J Pathol. 1988 Sep;132(3):444–454. [PMC free article] [PubMed] [Google Scholar]
- Perkett E. A., Davidson J. M., Meyrick B. Sequence of structural changes and elastin peptide release during vascular remodelling in sheep with chronic pulmonary hypertension induced by air embolization. Am J Pathol. 1991 Dec;139(6):1319–1332. [PMC free article] [PubMed] [Google Scholar]
- Post J. M., Hume J. R., Archer S. L., Weir E. K. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol. 1992 Apr;262(4 Pt 1):C882–C890. doi: 10.1152/ajpcell.1992.262.4.C882. [DOI] [PubMed] [Google Scholar]
- Rodman D. M. Chronic hypoxia selectively augments rat pulmonary artery Ca2+ and K+ channel-mediated relaxation. Am J Physiol. 1992 Jul;263(1 Pt 1):L88–L94. doi: 10.1152/ajplung.1992.263.1.L88. [DOI] [PubMed] [Google Scholar]
- Russ R. D., Walker B. R. Maintained endothelium-dependent pulmonary vasodilation following chronic hypoxia in the rat. J Appl Physiol (1985) 1993 Jan;74(1):339–344. doi: 10.1152/jappl.1993.74.1.339. [DOI] [PubMed] [Google Scholar]
- Sacks T., Moldow C. F., Craddock P. R., Bowers T. K., Jacob H. S. Oxygen radicals mediate endothelial cell damage by complement-stimulated granulocytes. An in vitro model of immune vascular damage. J Clin Invest. 1978 May;61(5):1161–1167. doi: 10.1172/JCI109031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smirnov S. V., Robertson T. P., Ward J. P., Aaronson P. I. Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary artery muscle cells. Am J Physiol. 1994 Jan;266(1 Pt 2):H365–H370. doi: 10.1152/ajpheart.1994.266.1.H365. [DOI] [PubMed] [Google Scholar]
- Staub N. C., Schultz E. L., Albertine K. H. Leucocytes and pulmonary microvascular injury. Ann N Y Acad Sci. 1982;384:332–343. doi: 10.1111/j.1749-6632.1982.tb21382.x. [DOI] [PubMed] [Google Scholar]
- Taylor S. G., Weston A. H. Endothelium-derived hyperpolarizing factor: a new endogenous inhibitor from the vascular endothelium. Trends Pharmacol Sci. 1988 Aug;9(8):272–274. doi: 10.1016/0165-6147(88)90003-x. [DOI] [PubMed] [Google Scholar]
- Wang D., Li M. H., Hsu K., Shen C. Y., Chen H. I., Lin Y. C. Air embolism-induced lung injury in isolated rat lungs. J Appl Physiol (1985) 1992 Apr;72(4):1235–1242. doi: 10.1152/jappl.1992.72.4.1235. [DOI] [PubMed] [Google Scholar]
- Wanstall J. C., Hughes I. E., O'Donnell S. R. Reduced relaxant potency of nitroprusside on pulmonary artery preparations taken from rats during the development of hypoxic pulmonary hypertension. Br J Pharmacol. 1992 Oct;107(2):407–413. doi: 10.1111/j.1476-5381.1992.tb12759.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wanstall J. C., O'Donnell S. R. Responses to vasodilator drugs on pulmonary artery preparations from pulmonary hypertensive rats. Br J Pharmacol. 1992 Jan;105(1):152–158. doi: 10.1111/j.1476-5381.1992.tb14227.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weiss S. J., Young J., LoBuglio A. F., Slivka A., Nimeh N. F. Role of hydrogen peroxide in neutrophil-mediated destruction of cultured endothelial cells. J Clin Invest. 1981 Sep;68(3):714–721. doi: 10.1172/JCI110307. [DOI] [PMC free article] [PubMed] [Google Scholar]
