Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Nov;116(5):2510–2516. doi: 10.1111/j.1476-5381.1995.tb15103.x

Correlation of cyclic AMP accumulation and relaxant actions of salmeterol and salbutamol in bovine tracheal smooth muscle.

K E Ellis 1, R Mistry 1, J P Boyle 1, R A Challiss 1
PMCID: PMC1909057  PMID: 8581292

Abstract

1. The ability of salmeterol to stimulate cyclic AMP accumulation and relaxation has been compared with that of salbutamol in bovine tracheal smooth muscle. In addition, the anti-spasmogenic effects of these agents and their abilities to modulate histamine-stimulated [3H]-inositol phosphate accumulation have also been investigated. 2. In tissue strips, a close temporal correlation was found to exist between salmeterol (0.1 microM)-induced relaxation of methacholine (500 nM)-induced tone and cyclic AMP accumulation, both maximal reversal of induced tone (26.2 +/- 6.0%) and maximal levels of cyclic AMP accumulation being achieved after 30-40 min. In contrast to salmeterol, salbutamol exerted greater and more rapid effects on both parameters. Maximal reversal of methacholine-induced tone (79.3 +/- 14.0%) and maximal levels of cyclic AMP accumulation were produced within 5 min. 3. Salmeterol-induced cyclic AMP accumulation (EC50 = 5.3 [1.8 - 15.2] nM) and inhibition of histamine (0.1 mM)-stimulated [3H]-inositol phosphate accumulation (IC50 = 1.4 [0.3-6.3] nM) were both more potent than those induced by salbutamol (EC50 = 169 [99 - 290] nM; IC50 = 13.8 [7.0 - 27.4] nM). However, maximal effects exerted by each of these agents were similar in magnitude. 4. Anti-spasmogenic effects were examined by beta-adrenoceptor agonist application to tissue strips prior to construction of spasmogen concentration-effect curves. Both salmeterol and salbutamol exerted more marked inhibition of the contractile response induced by histamine than that induced by methacholine, salmeterol being the more potent agent, while salbutamol produced a greater maximal inhibitory effect. 5. The results demonstrate that salmeterol is a more potent agent than salbutamol and have highlighted a close temporal correlation between promotion of cyclic AMP accumulation and tissue relaxation stimulated by each agent when both parameters are measured under identical conditions.

Full text

PDF
2510

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson G. P., Lindén A., Rabe K. F. Why are long-acting beta-adrenoceptor agonists long-acting? Eur Respir J. 1994 Mar;7(3):569–578. doi: 10.1183/09031936.94.07030569. [DOI] [PubMed] [Google Scholar]
  2. Ball D. I., Brittain R. T., Coleman R. A., Denyer L. H., Jack D., Johnson M., Lunts L. H., Nials A. T., Sheldrick K. E., Skidmore I. F. Salmeterol, a novel, long-acting beta 2-adrenoceptor agonist: characterization of pharmacological activity in vitro and in vivo. Br J Pharmacol. 1991 Nov;104(3):665–671. doi: 10.1111/j.1476-5381.1991.tb12486.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Challiss R. A., Adams D., Mistry R., Boyle J. P. Second messenger and ionic modulation of agonist-stimulated phosphoinositide turnover in airway smooth muscle. Biochem Soc Trans. 1993 Nov;21(4):1138–1145. doi: 10.1042/bst0211138. [DOI] [PubMed] [Google Scholar]
  5. Challiss R. A., Patel N., Arch J. R. Comparative effects of BRL 38227, nitrendipine and isoprenaline on carbachol- and histamine-stimulated phosphoinositide metabolism in airway smooth muscle. Br J Pharmacol. 1992 Apr;105(4):997–1003. doi: 10.1111/j.1476-5381.1992.tb09091.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chilvers E. R., Lynch B. J., Challiss R. A. Phosphoinositide metabolism in airway smooth muscle. Pharmacol Ther. 1994 Apr-May;62(1-2):221–245. doi: 10.1016/0163-7258(94)90012-4. [DOI] [PubMed] [Google Scholar]
  7. Chilvers E. R., Lynch B. J., Offer G. J., Challiss R. A. Effects of membrane depolarization and changes in intra- and extracellular calcium concentration on phosphoinositide hydrolysis in bovine tracheal smooth muscle. Biochem Pharmacol. 1994 Jun 15;47(12):2171–2179. doi: 10.1016/0006-2952(94)90252-6. [DOI] [PubMed] [Google Scholar]
  8. Chiu P., Cook S. J., Small R. C., Berry J. L., Carpenter J. R., Downing S. J., Foster R. W., Miller A. J., Small A. M. Beta-adrenoceptor subtypes and the opening of plasmalemmal K(+)-channels in bovine trachealis muscle: studies of mechanical activity and ion fluxes. Br J Pharmacol. 1993 Aug;109(4):1149–1156. doi: 10.1111/j.1476-5381.1993.tb13742.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cook S. J., Small R. C., Berry J. L., Chiu P., Downing S. J., Foster R. W. Beta-adrenoceptor subtypes and the opening of plasmalemmal K(+)-channels in trachealis muscle: electrophysiological and mechanical studies in guinea-pig tissue. Br J Pharmacol. 1993 Aug;109(4):1140–1148. doi: 10.1111/j.1476-5381.1993.tb13741.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deeg M. A., Graeff R. M., Walseth T. F., Goldberg N. D. A Ca2+-linked increase in coupled cAMP synthesis and hydrolysis is an early event in cholinergic and beta-adrenergic stimulation of parotid secretion. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7867–7871. doi: 10.1073/pnas.85.21.7867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dougall I. G., Harper D., Jackson D. M., Leff P. Estimation of the efficacy and affinity of the beta 2-adrenoceptor agonist salmeterol in guinea-pig trachea. Br J Pharmacol. 1991 Dec;104(4):1057–1061. doi: 10.1111/j.1476-5381.1991.tb12549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Giembycz M. A., Raeburn D. Putative substrates for cyclic nucleotide-dependent protein kinases and the control of airway smooth muscle tone. J Auton Pharmacol. 1991 Dec;11(6):365–398. doi: 10.1111/j.1474-8673.1991.tb00260.x. [DOI] [PubMed] [Google Scholar]
  13. Hall I. P., Donaldson J., Hill S. J. Inhibition of histamine-stimulated inositol phospholipid hydrolysis by agents which increase cyclic AMP levels in bovine tracheal smooth muscle. Br J Pharmacol. 1989 Jun;97(2):603–613. doi: 10.1111/j.1476-5381.1989.tb11992.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hall I. P., Hill S. J. Beta-adrenoceptor stimulation inhibits histamine-stimulated inositol phospholipid hydrolysis in bovine tracheal smooth muscle. Br J Pharmacol. 1988 Dec;95(4):1204–1212. doi: 10.1111/j.1476-5381.1988.tb11757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hecker M., Pörsti I., Bara A. T., Busse R. Potentiation by ACE inhibitors of the dilator response to bradykinin in the coronary microcirculation: interaction at the receptor level. Br J Pharmacol. 1994 Jan;111(1):238–244. doi: 10.1111/j.1476-5381.1994.tb14050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jack D. The 1990 Lilly Prize Lecture. A way of looking at agonism and antagonism: lessons from salbutamol, salmeterol and other beta-adrenoceptor agonists. Br J Clin Pharmacol. 1991 May;31(5):501–514. doi: 10.1111/j.1365-2125.1991.tb05571.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson M. Salmeterol: a novel drug for the treatment of asthma. Agents Actions Suppl. 1991;34:79–95. [PubMed] [Google Scholar]
  18. Källström B. L., Sjöberg J., Waldeck B. The interaction between salmeterol and beta 2-adrenoceptor agonists with higher efficacy on guinea-pig trachea and human bronchus in vitro. Br J Pharmacol. 1994 Nov;113(3):687–692. doi: 10.1111/j.1476-5381.1994.tb17047.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lemonine H., Novotny G. E., Kaumann A. J. Neuronally released (-)-noradrenaline relaxes smooth muscle of calf trachea mainly through beta 1-adrenoceptors: comparison with (-)-adrenaline and relation to adenylate cyclase stimulation. Naunyn Schmiedebergs Arch Pharmacol. 1989 Jan-Feb;339(1-2):85–98. doi: 10.1007/BF00165131. [DOI] [PubMed] [Google Scholar]
  21. Levitzki A., Bar-Sinai A. The regulation of adenylyl cyclase by receptor-operated G proteins. Pharmacol Ther. 1991;50(3):271–283. doi: 10.1016/0163-7258(91)90045-n. [DOI] [PubMed] [Google Scholar]
  22. Madison J. M., Brown J. K. Differential inhibitory effects of forskolin, isoproterenol, and dibutyryl cyclic adenosine monophosphate on phosphoinositide hydrolysis in canine tracheal smooth muscle. J Clin Invest. 1988 Oct;82(4):1462–1465. doi: 10.1172/JCI113752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Malo J. L., Ghezzo H., Trudeau C., L'Archevêque J., Cartier A. Salmeterol, a new inhaled beta 2-adrenergic agonist, has a longer blocking effect than albuterol on hyperventilation-induced bronchoconstriction. J Allergy Clin Immunol. 1992 Feb;89(2):567–574. doi: 10.1016/0091-6749(92)90324-u. [DOI] [PubMed] [Google Scholar]
  24. McCrea K. E., Hill S. J. Salmeterol, a long-acting beta 2-adrenoceptor agonist mediating cyclic AMP accumulation in a neuronal cell line. Br J Pharmacol. 1993 Oct;110(2):619–626. doi: 10.1111/j.1476-5381.1993.tb13856.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Naline E., Zhang Y., Qian Y., Mairon N., Anderson G. P., Grandordy B., Advenier C. Relaxant effects and durations of action of formoterol and salmeterol on the isolated human bronchus. Eur Respir J. 1994 May;7(5):914–920. [PubMed] [Google Scholar]
  26. Nials A. T., Coleman R. A., Johnson M., Magnussen H., Rabe K. F., Vardey C. J. Effects of beta-adrenoceptor agonists in human bronchial smooth muscle. Br J Pharmacol. 1993 Nov;110(3):1112–1116. doi: 10.1111/j.1476-5381.1993.tb13929.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nials A. T., Sumner M. J., Johnson M., Coleman R. A. Investigations into factors determining the duration of action of the beta 2-adrenoceptor agonist, salmeterol. Br J Pharmacol. 1993 Feb;108(2):507–515. doi: 10.1111/j.1476-5381.1993.tb12833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rabe K. F., Jörres R., Nowak D., Behr N., Magnussen H. Comparison of the effects of salmeterol and formoterol on airway tone and responsiveness over 24 hours in bronchial asthma. Am Rev Respir Dis. 1993 Jun;147(6 Pt 1):1436–1441. doi: 10.1164/ajrccm/147.6_Pt_1.1436. [DOI] [PubMed] [Google Scholar]
  29. Rhodes D. G., Newton R., Butler R., Herbette L. Equilibrium and kinetic studies of the interactions of salmeterol with membrane bilayers. Mol Pharmacol. 1992 Oct;42(4):596–602. [PubMed] [Google Scholar]
  30. Ullman A., Bergendal A., Lindén A., Waldeck B., Skoogh B. E., Löfdahl C. G. Onset of action and duration of effect of formoterol and salmeterol compared to salbutamol in isolated guinea pig trachea with or without epithelium. Allergy. 1992 Aug;47(4 Pt 2):384–387. doi: 10.1111/j.1398-9995.1992.tb02076.x. [DOI] [PubMed] [Google Scholar]
  31. Ullman A., Svedmyr N. Salmeterol, a new long acting inhaled beta 2 adrenoceptor agonist: comparison with salbutamol in adult asthmatic patients. Thorax. 1988 Sep;43(9):674–678. doi: 10.1136/thx.43.9.674. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES