Abstract
1. The patch-clamp technique was used to characterize chloride channels from the apical membranes of bovine tracheal epithelial cells. Application of GTP gamma S or NaF to excised patches revealed the existence of a novel type of Cl- channel regulated by G-proteins in a membrane-delimited manner. 2. The channel had a linear current-voltage relationship, with a conductance of 100-120 pS. Its open probability was independent of voltage. 3. The channel was highly anion selective (permeability ratio, PNa/PCl = 0.06 +/- 0.04) and had the halide permeability sequence: I- > Br- > or = Cl- > F-, corresponding to the Eisenman I sequence. This suggested that neither ionic size nor diffusion rate determined ion permeation through the channel. 4. The mole fraction behaviour was studied using fluoride and chloride ions. Mixtures of ions produced currents that would be expected from the linear combination of the two ions acting independently, indicating relatively simple permeation through the pore and compatible with a single ion binding site. 5. The channel was inhibited by the stilbene disulphonates SITS (4-acetamido-4'-isothiocyanatostilbene-2, 2'-disulphonic acid) and DNDS (4,4'-dinitrostilbene-2,2'-sulphonic acid). SITS introduced voltage dependence to channel gating and indicated the possible involvement of lysine residues in the channel permeation pathway. 6. NaF was unable to activate Cl- channels in the presence of the aluminum chelator, deferoxamine mesylate. This indicates that Al3+ ions play an important role in chloride channel activation by fluoride. NaF activation was not dependent on the presence of calcium ions. 7. The channel was insensitive to alkaline phosphatase and to the specific inhibitors of protein phosphatase types I and 2A, okadaic acid and calyculin A. 8. The channels could be activated by GTP gamma S or by NaF in the presence of the phospholipase A2 inhibitor quinacrine, indicating that this enzyme is not involved in channel regulation.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ausiello D. A., Stow J. L., Cantiello H. F., de Almeida J. B., Benos D. J. Purified epithelial Na+ channel complex contains the pertussis toxin-sensitive G alpha i-3 protein. J Biol Chem. 1992 Mar 5;267(7):4759–4765. [PubMed] [Google Scholar]
- Barry P. H., Lynch J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol. 1991 Apr;121(2):101–117. doi: 10.1007/BF01870526. [DOI] [PubMed] [Google Scholar]
- Bielefeldt K., Jackson M. B. Intramolecular and intermolecular enzymatic modulation of ion channels in excised membrane patches. Biophys J. 1994 Jun;66(6):1904–1914. doi: 10.1016/S0006-3495(94)80984-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breitwieser G. E. G protein-mediated ion channel activation. Hypertension. 1991 May;17(5):684–692. doi: 10.1161/01.hyp.17.5.684. [DOI] [PubMed] [Google Scholar]
- Brown A. M. Membrane-delimited cell signaling complexes: direct ion channel regulation by G proteins. J Membr Biol. 1993 Jan;131(2):93–104. doi: 10.1007/BF02791318. [DOI] [PubMed] [Google Scholar]
- Brunen M., Engelhardt H. Asymmetry of orientation and voltage gating of the Acidovorax delafieldii porin Omp34 in lipid bilayers. Eur J Biochem. 1993 Feb 15;212(1):129–135. doi: 10.1111/j.1432-1033.1993.tb17642.x. [DOI] [PubMed] [Google Scholar]
- Chabre M. Aluminofluoride and beryllofluoride complexes: a new phosphate analogs in enzymology. Trends Biochem Sci. 1990 Jan;15(1):6–10. doi: 10.1016/0968-0004(90)90117-t. [DOI] [PubMed] [Google Scholar]
- Collins K. D., Washabaugh M. W. The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys. 1985 Nov;18(4):323–422. doi: 10.1017/s0033583500005369. [DOI] [PubMed] [Google Scholar]
- Doroshenko P. Second messengers mediating activation of chloride current by intracellular GTP gamma S in bovine chromaffin cells. J Physiol. 1991 May;436:725–738. doi: 10.1113/jphysiol.1991.sp018576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duszyk M., Liu D., French A. S., Man S. F. Halide permeation through three types of epithelial anion channels after reconstitution into giant liposomes. Eur Biophys J. 1993;22(1):5–11. doi: 10.1007/BF00205807. [DOI] [PubMed] [Google Scholar]
- Hamilton S. L., Codina J., Hawkes M. J., Yatani A., Sawada T., Strickland F. M., Froehner S. C., Spiegel A. M., Toro L., Stefani E. Evidence for direct interaction of Gs alpha with the Ca2+ channel of skeletal muscle. J Biol Chem. 1991 Oct 15;266(29):19528–19535. [PubMed] [Google Scholar]
- Hanke W., Miller C. Single chloride channels from Torpedo electroplax. Activation by protons. J Gen Physiol. 1983 Jul;82(1):25–45. doi: 10.1085/jgp.82.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ildefonse M., Bennett N. Single-channel study of the cGMP-dependent conductance of retinal rods from incorporation of native vesicles into planar lipid bilayers. J Membr Biol. 1991 Aug;123(2):133–147. doi: 10.1007/BF01998084. [DOI] [PubMed] [Google Scholar]
- Ismailov I. I., McDuffie J. H., Benos D. J. Protein kinase A phosphorylation and G protein regulation of purified renal Na+ channels in planar bilayer membranes. J Biol Chem. 1994 Apr 8;269(14):10235–10241. [PubMed] [Google Scholar]
- Kapicka C. L., Carl A., Hall M. L., Percival A. L., Frey B. W., Kenyon J. L. Comparison of large-conductance Ca(2+)-activated K+ channels in artificial bilayer and patch-clamp experiments. Am J Physiol. 1994 Mar;266(3 Pt 1):C601–C610. doi: 10.1152/ajpcell.1994.266.3.C601. [DOI] [PubMed] [Google Scholar]
- Keller B. U., Hedrich R., Vaz W. L., Criado M. Single channel recordings of reconstituted ion channel proteins: an improved technique. Pflugers Arch. 1988 Jan;411(1):94–100. doi: 10.1007/BF00581652. [DOI] [PubMed] [Google Scholar]
- Kemp P. J., MacGregor G. G., Olver R. E. G protein-regulated large-conductance chloride channels in freshly isolated fetal type II alveolar epithelial cells. Am J Physiol. 1993 Oct;265(4 Pt 1):L323–L329. doi: 10.1152/ajplung.1993.265.4.L323. [DOI] [PubMed] [Google Scholar]
- Korn S. J., Horn R. Statistical discrimination of fractal and Markov models of single-channel gating. Biophys J. 1988 Nov;54(5):871–877. doi: 10.1016/S0006-3495(88)83023-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langridge-Smith J. E., Field M., Dubinsky W. P. Isolation of transporting plasma membrane vesicles from bovine tracheal epithelium. Biochim Biophys Acta. 1983 Jun 10;731(2):318–328. doi: 10.1016/0005-2736(83)90024-x. [DOI] [PubMed] [Google Scholar]
- Mangel A. W., Raymond J. R., Fitz J. G. Regulation of high-conductance anion channels by G proteins and 5-HT1A receptors in CHO cells. Am J Physiol. 1993 Mar;264(3 Pt 2):F490–F495. doi: 10.1152/ajprenal.1993.264.3.F490. [DOI] [PubMed] [Google Scholar]
- Martin D. K. Small conductance chloride channels in acinar cells from the rat mandibular salivary gland are directly controlled by a G-protein. Biochem Biophys Res Commun. 1993 May 14;192(3):1266–1273. doi: 10.1006/bbrc.1993.1553. [DOI] [PubMed] [Google Scholar]
- McGill J. M., Gettys T. W., Basavappa S., Fitz J. G. GTP-binding proteins regulate high conductance anion channels in rat bile duct epithelial cells. J Membr Biol. 1993 May;133(3):253–261. doi: 10.1007/BF00232024. [DOI] [PubMed] [Google Scholar]
- Neubig R. R., Krodel E. K., Boyd N. D., Cohen J. B. Acetylcholine and local anesthetic binding to Torpedo nicotinic postsynaptic membranes after removal of nonreceptor peptides. Proc Natl Acad Sci U S A. 1979 Feb;76(2):690–694. doi: 10.1073/pnas.76.2.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ran S., Fuller C. M., Arrate M. P., Latorre R., Benos D. J. Functional reconstitution of a chloride channel protein from bovine trachea. J Biol Chem. 1992 Oct 15;267(29):20630–20637. [PubMed] [Google Scholar]
- Schwiebert E. M., Kizer N., Gruenert D. C., Stanton B. A. GTP-binding proteins inhibit cAMP activation of chloride channels in cystic fibrosis airway epithelial cells. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10623–10627. doi: 10.1073/pnas.89.22.10623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwiebert E. M., Light D. B., Fejes-Toth G., Naray-Fejes-Toth A., Stanton B. A. A GTP-binding protein activates chloride channels in a renal epithelium. J Biol Chem. 1990 May 15;265(14):7725–7728. [PubMed] [Google Scholar]
- Tilly B. C., Kansen M., van Gageldonk P. G., van den Berghe N., Galjaard H., Bijman J., de Jonge H. R. G-proteins mediate intestinal chloride channel activation. J Biol Chem. 1991 Feb 5;266(4):2036–2040. [PubMed] [Google Scholar]
- Valdivia H. H., Dubinsky W. P., Coronado R. Reconstitution and phosphorylation of chloride channels from airway epithelium membranes. Science. 1988 Dec 9;242(4884):1441–1444. doi: 10.1126/science.2462280. [DOI] [PubMed] [Google Scholar]
- Wright E. M., Diamond J. M. Anion selectivity in biological systems. Physiol Rev. 1977 Jan;57(1):109–156. doi: 10.1152/physrev.1977.57.1.109. [DOI] [PubMed] [Google Scholar]
- Yatani A., Brown A. M. Mechanism of fluoride activation of G protein-gated muscarinic atrial K+ channels. J Biol Chem. 1991 Dec 5;266(34):22872–22877. [PubMed] [Google Scholar]