Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1995 Sep;7(9):1405–1419. doi: 10.1105/tpc.7.9.1405

Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction.

W Boerjan 1, M T Cervera 1, M Delarue 1, T Beeckman 1, W Dewitte 1, C Bellini 1, M Caboche 1, H Van Onckelen 1, M Van Montagu 1, D Inzé 1
PMCID: PMC160963  PMID: 8589625

Abstract

We have isolated seven allelic recessive Arabidopsis mutants, designated superroot (sur1-1 to sur1-7), displaying several abnormalities reminiscent of auxin effects. These characteristics include small and epinastic cotyledons, an elongated hypocotyl in which the connection between the stele and cortical and epidermal cells disintegrates, the development of excess adventitious and lateral roots, a reduced number of leaves, and the absence of an inflorescence. When germinated in the dark, sur1 mutants did not develop the apical hook characteristic of etiolated seedlings. We were able to phenocopy the Sur1- phenotype by supplying auxin to wild-type seedlings, to propagate sur1 explants on phytohormone-deficient medium, and to regenerate shoots from these explants by the addition of cytokinins alone to the culture medium. Analysis by gas chromatography coupled to mass spectrometry indicated increased levels of both free and conjugated indole-3-acetic acid. sur1 was crossed to the mutant axr2 and the altered-auxin response mutant ctr1. The phenotype of both double mutants was additive. The sur1 gene was mapped on chromosome 2 at 0.5 centimorgans from the gene encoding phytochrome B.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldi B. G., Maher B. R., Slovin J. P., Cohen J. D. Stable Isotope Labeling, in Vivo, of d- and l-Tryptophan Pools in Lemna gibba and the Low Incorporation of Label into Indole-3-Acetic Acid. Plant Physiol. 1991 Apr;95(4):1203–1208. doi: 10.1104/pp.95.4.1203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartel B., Fink G. R. Differential regulation of an auxin-producing nitrilase gene family in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6649–6653. doi: 10.1073/pnas.91.14.6649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bartling D., Seedorf M., Schmidt R. C., Weiler E. W. Molecular characterization of two cloned nitrilases from Arabidopsis thaliana: key enzymes in biosynthesis of the plant hormone indole-3-acetic acid. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6021–6025. doi: 10.1073/pnas.91.13.6021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boerjan W., den Boer B., van Montagu M. Molecular genetic approaches to plant development. Int J Dev Biol. 1992 Mar;36(1):59–66. [PubMed] [Google Scholar]
  5. Cardarelli M, Mariotti D, Pomponi M, Spanò L, Capone I, Costantino P. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet. 1987 Oct;209(3):475–480. doi: 10.1007/BF00331152. [DOI] [PubMed] [Google Scholar]
  6. Chory J., Peto C., Feinbaum R., Pratt L., Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989 Sep 8;58(5):991–999. doi: 10.1016/0092-8674(89)90950-1. [DOI] [PubMed] [Google Scholar]
  7. Cohen J. D., Baldi B. G., Slovin J. P. C(6)-[benzene ring]-indole-3-acetic Acid: a new internal standard for quantitative mass spectral analysis of indole-3-acetic Acid in plants. Plant Physiol. 1986 Jan;80(1):14–19. doi: 10.1104/pp.80.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Delbarre A., Muller P., Imhoff V., Barbier-Brygoo H., Maurel C., Leblanc N., Perrot-Rechenmann C., Guern J. The rolB Gene of Agrobacterium rhizogenes Does Not Increase the Auxin Sensitivity of Tobacco Protoplasts by Modifying the Intracellular Auxin Concentration. Plant Physiol. 1994 Jun;105(2):563–569. doi: 10.1104/pp.105.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hobbie L., Estelle M. Genetic approaches to auxin action. Plant Cell Environ. 1994 Jun;17(6):525–540. doi: 10.1111/j.1365-3040.1994.tb00147.x. [DOI] [PubMed] [Google Scholar]
  10. Julliard J., Sotta B., Pelletier G., Miginiac E. Enhancement of Naphthaleneacetic Acid-Induced Rhizogenesis in T(L)-DNA-Transformed Brassica napus without Significant Modification of Auxin Levels and Auxin Sensitivity. Plant Physiol. 1992 Nov;100(3):1277–1282. doi: 10.1104/pp.100.3.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Karlin-Neumann G. A., Brusslan J. A., Tobin E. M. Phytochrome control of the tms2 gene in transgenic Arabidopsis: a strategy for selecting mutants in the signal transduction pathway. Plant Cell. 1991 Jun;3(6):573–582. doi: 10.1105/tpc.3.6.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  13. Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
  14. Leyser H. M., Lincoln C. A., Timpte C., Lammer D., Turner J., Estelle M. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature. 1993 Jul 8;364(6433):161–164. doi: 10.1038/364161a0. [DOI] [PubMed] [Google Scholar]
  15. Maurel C., Leblanc N., Barbier-Brygoo H., Perrot-Rechenmann C., Bouvier-Durand M., Guern J. Alterations of auxin perception in rolB-transformed tobacco protoplasts. Time course of rolB mRNA expression and increase in auxin sensitivity reveal multiple control by auxin. Plant Physiol. 1994 Aug;105(4):1209–1215. doi: 10.1104/pp.105.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Normanly J., Cohen J. D., Fink G. R. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10355–10359. doi: 10.1073/pnas.90.21.10355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Normanly J., Slovin J. P., Cohen J. D. Rethinking Auxin Biosynthesis and Metabolism. Plant Physiol. 1995 Feb;107(2):323–329. doi: 10.1104/pp.107.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Okada K., Ueda J., Komaki M. K., Bell C. J., Shimura Y. Requirement of the Auxin Polar Transport System in Early Stages of Arabidopsis Floral Bud Formation. Plant Cell. 1991 Jul;3(7):677–684. doi: 10.1105/tpc.3.7.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Romano C. P., Cooper M. L., Klee H. J. Uncoupling Auxin and Ethylene Effects in Transgenic Tobacco and Arabidopsis Plants. Plant Cell. 1993 Feb;5(2):181–189. doi: 10.1105/tpc.5.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Romano C. P., Hein M. B., Klee H. J. Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev. 1991 Mar;5(3):438–446. doi: 10.1101/gad.5.3.438. [DOI] [PubMed] [Google Scholar]
  22. Romano C. P., Robson P. R., Smith H., Estelle M., Klee H. Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol. 1995 Mar;27(6):1071–1083. doi: 10.1007/BF00020881. [DOI] [PubMed] [Google Scholar]
  23. Sitbon F., Ostin A., Sundberg B., Olsson O., Sandberg G. Conjugation of Indole-3-Acetic Acid (IAA) in Wild-Type and IAA-Overprodcing Transgenic Tobacco Plants, and Identification of the Main Conjugates by Frit-Fast Atom Bombardment Liquid Chromatography-Mass Spectrometry. Plant Physiol. 1993 Jan;101(1):313–320. doi: 10.1104/pp.101.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sitbon F., Sundberg B., Olsson O., Sandberg G. Free and Conjugated Indoleacetic Acid (IAA) Contents in Transgenic Tobacco Plants Expressing the iaaM and iaaH IAA Biosynthesis Genes from Agrobacterium tumefaciens. Plant Physiol. 1991 Feb;95(2):480–485. doi: 10.1104/pp.95.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Slovin J. P., Cohen J. D. Levels of Indole-3-Acetic Acid in Lemna gibba G-3 and in a Large Lemna Mutant Regenerated from Tissue Culture. Plant Physiol. 1988 Feb;86(2):522–526. doi: 10.1104/pp.86.2.522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Spena A., Prinsen E., Fladung M., Schulze S. C., Van Onckelen H. The indoleacetic acid-lysine synthetase gene of Pseudomonas syringae subsp. savastanoi induces developmental alterations in transgenic tobacco and potato plants. Mol Gen Genet. 1991 Jun;227(2):205–212. doi: 10.1007/BF00259672. [DOI] [PubMed] [Google Scholar]
  27. Suttle J. C. Biochemical Bases for the Loss of Basipetal IAA Transport with Advancing Physiological Age in Etiolated Helianthus Hypocotyls: Changes in IAA Movement, Net IAA Uptake, and Phytotropin Binding. Plant Physiol. 1991 Jul;96(3):875–880. doi: 10.1104/pp.96.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Szerszen J. B., Szczyglowski K., Bandurski R. S. iaglu, a gene from Zea mays involved in conjugation of growth hormone indole-3-acetic acid. Science. 1994 Sep 16;265(5179):1699–1701. doi: 10.1126/science.8085154. [DOI] [PubMed] [Google Scholar]
  29. Sánchez-Bravo J., Ortuño A. M., Botía J. M., Acosta M., Sabater F. The decrease in auxin polar transport down the lupin hypocotyl could produce the indole-3-acetic Acid distribution responsible for the elongation growth pattern. Plant Physiol. 1992 Sep;100(1):108–114. doi: 10.1104/pp.100.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Timpte C., Wilson A. K., Estelle M. The axr2-1 mutation of Arabidopsis thaliana is a gain-of-function mutation that disrupts an early step in auxin response. Genetics. 1994 Dec;138(4):1239–1249. doi: 10.1093/genetics/138.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wilson A. K., Pickett F. B., Turner J. C., Estelle M. A dominant mutation in Arabidopsis confers resistance to auxin, ethylene and abscisic acid. Mol Gen Genet. 1990 Jul;222(2-3):377–383. doi: 10.1007/BF00633843. [DOI] [PubMed] [Google Scholar]
  33. Wright A. D., Sampson M. B., Neuffer M. G., Michalczuk L., Slovin J. P., Cohen J. D. Indole-3-Acetic Acid Biosynthesis in the Mutant Maize orange pericarp, a Tryptophan Auxotroph. Science. 1991 Nov 15;254(5034):998–1000. doi: 10.1126/science.254.5034.998. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES