Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1995 Nov;116(6):2603–2610. doi: 10.1111/j.1476-5381.1995.tb17214.x

Characterization of inhibition by haloperidol and chlorpromazine of a voltage-activated K+ current in rat phaeochromocytoma cells.

K Nakazawa 1, K Ito 1, S Koizumi 1, Y Ohno 1, K Inoue 1
PMCID: PMC1909140  PMID: 8590977

Abstract

1. Inhibition by haloperidol and chlorpromazine of a voltage-activated K+ current was characterized in rat phaeochromocytoma PC12 cells by use of whole-cell voltage-clamp techniques. 2. Haloperidol or chlorpromazine (1 and 10 microM) inhibited a K+ current activated by a test potential of +20 mV applied from a holding potential of -60 mV. The K+ current inhibition did not exhibit voltage-dependence when test potentials were changed between -10 and +40 mV or when holding potentials were changed between -120 and -60 mV. 3. Effects of compounds that are related to haloperidol and chlorpromazine in their pharmacological actions were examined. Fluspirilene (1 and 10 microM), an antipsychotic drug, inhibited the K+ current, but pimozide (1 and 10 microM), another antipsychotic drug did not significantly inhibit the K+ current. Sulpiride (1 or 10 microM), an antagonist of dopamine D2 receptors, did not affect the K+ current whereas (+)-SCH-23390 (10 microM), an antagonist of dopamine D1 receptors, reduced the K+ current. As for calmodulin antagonists, W-7 (100 microM), but not calmidazolium (1 microM), reduced the K+ current. 4. The inhibition by haloperidol or chlorpromazine of the K+ current was abolished when GTP in intracellular solution was replaced with GDP beta S. Similarly, the inhibition by pimozide, fluspirilene, (+)-SCH-23390 or W-7 was abolished or attenuated in the presence of intracellular GDP beta S. The inhibition by haloperidol or chlorpromazine was not prevented when cells were pretreated with pertussis toxin or when K-252a, an inhibitor of a variety of protein kinases, was included in the intracellular solution. 5. Haloperidol and chlorpromazine reduced a Ba2+ current permeating through Ca2+ channels. Inhibition by haloperidol or chlorpromazine of the Ba2+ current was not affected by GDP beta S included in the intracellular solution. 6. It is concluded that haloperidol and chlorpromazine inhibit voltage-gated K+ channels in PC12 cells by a mechanism involving GTP-binding proteins. The inhibition may not be related to their activity as antagonists of dopamine D2 receptors or calmodulin antagonists.

Full text

PDF
2603

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown D. A. M currents. Ion Channels. 1988;1:55–94. doi: 10.1007/978-1-4615-7302-9_2. [DOI] [PubMed] [Google Scholar]
  2. Choi J. J., Huang G. J., Shafik E., Wu W. H., McArdle J. J. Imipramine's selective suppression of an L-type calcium channel in neurons of murine dorsal root ganglia involves G proteins. J Pharmacol Exp Ther. 1992 Oct;263(1):49–53. [PubMed] [Google Scholar]
  3. Enyeart J. J., Biagi B. A., Mlinar B. Preferential block of T-type calcium channels by neuroleptics in neural crest-derived rat and human C cell lines. Mol Pharmacol. 1992 Aug;42(2):364–372. [PubMed] [Google Scholar]
  4. Fletcher E. J., Church J., MacDonald J. F. Haloperidol blocks voltage-activated Ca2+ channels in hippocampal neurones. Eur J Pharmacol. 1994 Apr 15;267(2):249–252. doi: 10.1016/0922-4106(94)90178-3. [DOI] [PubMed] [Google Scholar]
  5. Gietzen K., Wüthrich A., Bader H. R 24571: a new powerful inhibitor of red blood cell Ca++-transport ATPase and of calmodulin-regulated functions. Biochem Biophys Res Commun. 1981 Jul 30;101(2):418–425. doi: 10.1016/0006-291x(81)91276-6. [DOI] [PubMed] [Google Scholar]
  6. Gould R. J., Murphy K. M., Reynolds I. J., Snyder S. H. Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium channel antagonists. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5122–5125. doi: 10.1073/pnas.80.16.5122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  8. Hidaka H., Yamaki T., Naka M., Tanaka T., Hayashi H., Kobayashi R. Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol Pharmacol. 1980 Jan;17(1):66–72. [PubMed] [Google Scholar]
  9. Hille B. G protein-coupled mechanisms and nervous signaling. Neuron. 1992 Aug;9(2):187–195. doi: 10.1016/0896-6273(92)90158-a. [DOI] [PubMed] [Google Scholar]
  10. Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci. 1994 Dec;17(12):531–536. doi: 10.1016/0166-2236(94)90157-0. [DOI] [PubMed] [Google Scholar]
  11. Hoshi T., Aldrich R. W. Voltage-dependent K+ currents and underlying single K+ channels in pheochromocytoma cells. J Gen Physiol. 1988 Jan;91(1):73–106. doi: 10.1085/jgp.91.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Inoue K., Kenimer J. G. Muscarinic stimulation of calcium influx and norepinephrine release in PC12 cells. J Biol Chem. 1988 Jun 15;263(17):8157–8161. [PubMed] [Google Scholar]
  13. Inoue K., Watano T., Koizumi S., Nakazawa K., Burnstock G. Dual modulation by adenosine of ATP-activated channels through GTP-binding proteins in rat pheochromocytoma PC12 cells. Eur J Pharmacol. 1994 Jul 15;268(2):223–229. doi: 10.1016/0922-4106(94)90192-9. [DOI] [PubMed] [Google Scholar]
  14. Jacobs E. R., DeCoursey T. E. Mechanisms of potassium channel block in rat alveolar epithelial cells. J Pharmacol Exp Ther. 1990 Nov;255(2):459–472. [PubMed] [Google Scholar]
  15. Kase H., Iwahashi K., Nakanishi S., Matsuda Y., Yamada K., Takahashi M., Murakata C., Sato A., Kaneko M. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun. 1987 Jan 30;142(2):436–440. doi: 10.1016/0006-291x(87)90293-2. [DOI] [PubMed] [Google Scholar]
  16. Klöckner U., Isenberg G. Calmodulin antagonists depress calcium and potassium currents in ventricular and vascular myocytes. Am J Physiol. 1987 Dec;253(6 Pt 2):H1601–H1611. doi: 10.1152/ajpheart.1987.253.6.H1601. [DOI] [PubMed] [Google Scholar]
  17. Koizumi S., Ikeda M., Nakazawa K., Inoue K., Nagamatsu K., Hasegawa A., Inoue K. Accentuation by pertussis toxin of the 5-hydroxytryptamine-induced potentiation of ATP-evoked responses in rat pheochromocytoma cells. Neurosci Lett. 1995 Jan 2;183(1-2):104–107. doi: 10.1016/0304-3940(94)11125-3. [DOI] [PubMed] [Google Scholar]
  18. Koizumi S., Watano T., Nakazawa K., Inoue K. Potentiation by adenosine of ATP-evoked dopamine release via a pertussis toxin-sensitive mechanism in rat phaeochromocytoma PC12 cells. Br J Pharmacol. 1994 Jul;112(3):992–997. doi: 10.1111/j.1476-5381.1994.tb13179.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kurachi Y., Nakajima T., Sugimoto T. On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflugers Arch. 1986 Sep;407(3):264–274. doi: 10.1007/BF00585301. [DOI] [PubMed] [Google Scholar]
  20. Levin R. M., Weiss B. Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. J Pharmacol Exp Ther. 1979 Mar;208(3):454–459. [PubMed] [Google Scholar]
  21. Nakazawa K., Fujimori K., Takanaka A., Inoue K. Existence of muscarinic suppression of a K current in PC-12 pheochromocytoma cells. Am J Physiol. 1989 Nov;257(5 Pt 1):C1030–C1033. doi: 10.1152/ajpcell.1989.257.5.C1030. [DOI] [PubMed] [Google Scholar]
  22. Nakazawa K., Inoue K., Inoue K. ATP reduces voltage-activated K+ current in cultured rat hippocampal neurons. Pflugers Arch. 1994 Nov;429(1):143–145. doi: 10.1007/BF02584042. [DOI] [PubMed] [Google Scholar]
  23. Nakazawa K., Inoue K., Ohara-Imaizumi M., Fujimori K., Takanaka A. Inhibition of Ca-channels by diazepam compared with that by nicardipine in pheochromocytoma PC12 cells. Brain Res. 1991 Jul 5;553(1):44–50. doi: 10.1016/0006-8993(91)90228-n. [DOI] [PubMed] [Google Scholar]
  24. Nakazawa K., Watano T., Inoue K. Mechanisms underlying facilitation by dopamine of ATP-activated currents in rat pheochromocytoma cells. Pflugers Arch. 1993 Feb;422(5):458–464. doi: 10.1007/BF00375072. [DOI] [PubMed] [Google Scholar]
  25. Ogata N., Yoshii M., Narahashi T. Psychotropic drugs block voltage-gated ion channels in neuroblastoma cells. Brain Res. 1989 Jan 2;476(1):140–144. doi: 10.1016/0006-8993(89)91546-1. [DOI] [PubMed] [Google Scholar]
  26. Plummer M. R., Logothetis D. E., Hess P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons. Neuron. 1989 May;2(5):1453–1463. doi: 10.1016/0896-6273(89)90191-8. [DOI] [PubMed] [Google Scholar]
  27. Sah D. W., Bean B. P. Inhibition of P-type and N-type calcium channels by dopamine receptor antagonists. Mol Pharmacol. 1994 Jan;45(1):84–92. [PubMed] [Google Scholar]
  28. Seeman P. Brain dopamine receptors. Pharmacol Rev. 1980 Sep;32(3):229–313. [PubMed] [Google Scholar]
  29. Wooltorton J. R., Mathie A. Block of potassium currents in rat isolated sympathetic neurones by tricyclic antidepressants and structurally related compounds. Br J Pharmacol. 1993 Nov;110(3):1126–1132. doi: 10.1111/j.1476-5381.1993.tb13931.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES