Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1996 Jul;62(7):2547–2553. doi: 10.1128/aem.62.7.2547-2553.1996

Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus.

L Bezalel 1, Y Hadar 1, P P Fu 1, J P Freeman 1, C E Cerniglia 1
PMCID: PMC168037  PMID: 8779594

Abstract

The white rot fungus Pleurotus ostreatus, grown for 11 days in basidiomycetes rich medium containing [14C] phenanthrene, metabolized 94% of the phenanthrene added. Of the total radioactivity, 3% was oxidized to CO2. Approximately 52% of phenanthrene was metabolized to trans-9,10-dihydroxy-9,10-dihydrophenanthrene (phenanthrene trans-9,10-dihydrodiol) (28%), 2,2'-diphenic acid (17%), and unidentified metabolites (7%). Nonextractable metabolites accounted for 35% of the total radioactivity. The metabolites were extracted with ethyl acetate, separated by reversed-phase high-performance liquid chromatography, and characterized by 1H nuclear magnetic resonance, mass spectrometry, and UV spectroscopy analyses. 18O2-labeling experiments indicated that one atom of oxygen was incorporated into the phenanthrene trans-9,10-dihydrodiol. Circular dichroism spectra of the phenanthrene trans-9,10-dihydrodiol indicated that the absolute configuration of the predominant enantiomer was 9R,10R, which is different from that of the principal enantiomer produced by Phanerochaete chrysosporium. Significantly less phenanthrene trans-9,10-dihydrodiol was observed in incubations with the cytochrome P-450 inhibitor SKF 525-A (77% decrease), 1-aminobenzotriazole (83% decrease), or fluoxetine (63% decrease). These experiments with cytochrome P-450 inhibitors and 18O2 labeling and the formation of phenanthrene trans-9R,10R-dihydrodiol as the predominant metabolite suggest that P. ostreatus initially oxidizes phenanthrene stereoselectively by a cytochrome P-450 monoxygenase and that this is followed by epoxide hydrolase-catalyzed hydration reactions.

Full Text

The Full Text of this article is available as a PDF (312.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barclay C. D., Farquhar G. F., Legge R. L. Biodegradation and sorption of polyaromatic hydrocarbons by Phanerochaete chrysosporium. Appl Microbiol Biotechnol. 1995 Mar;42(6):958–963. doi: 10.1007/BF00191197. [DOI] [PubMed] [Google Scholar]
  2. Bezalel L., Hadar Y., Cerniglia C. E. Mineralization of Polycyclic Aromatic Hydrocarbons by the White Rot Fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996 Jan;62(1):292–295. doi: 10.1128/aem.62.1.292-295.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bogan B. W., Lamar R. T. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 1995 Jul;61(7):2631–2635. doi: 10.1128/aem.61.7.2631-2635.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bourbonnais R., Paice M. G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990 Jul 2;267(1):99–102. doi: 10.1016/0014-5793(90)80298-w. [DOI] [PubMed] [Google Scholar]
  5. Bourbonnais R., Paice M. G., Reid I. D., Lanthier P., Yaguchi M. Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl Environ Microbiol. 1995 May;61(5):1876–1880. doi: 10.1128/aem.61.5.1876-1880.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brodkorb T. S., Legge R. L. Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Sep;58(9):3117–3121. doi: 10.1128/aem.58.9.3117-3121.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bumpus J. A. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 1989 Jan;55(1):154–158. doi: 10.1128/aem.55.1.154-158.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bumpus J. A., Tien M., Wright D., Aust S. D. Oxidation of persistent environmental pollutants by a white rot fungus. Science. 1985 Jun 21;228(4706):1434–1436. doi: 10.1126/science.3925550. [DOI] [PubMed] [Google Scholar]
  9. Camarero S., Galletti G. C., Martínez A. T. Preferential degradation of phenolic lignin units by two white rot fungi. Appl Environ Microbiol. 1994 Dec;60(12):4509–4516. doi: 10.1128/aem.60.12.4509-4516.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Casillas R. P., Crow S. A., Jr, Heinze T. M., Deck J., Cerniglia C. E. Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol. 1996 Apr;16(4):205–215. doi: 10.1007/BF01570023. [DOI] [PubMed] [Google Scholar]
  11. Cerniglia C. E., Yang S. K. Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol. 1984 Jan;47(1):119–124. doi: 10.1128/aem.47.1.119-124.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dhawale S. W., Dhawale S. S., Dean-Ross D. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl Environ Microbiol. 1992 Sep;58(9):3000–3006. doi: 10.1128/aem.58.9.3000-3006.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Evans F. E., Deck J., Howard P. C. Structure of phenolic isomers of 2- and 3-nitrofluoranthene studied by one- and two-dimensional 1H NMR spectroscopy. Comparative analysis of mutagenicity. Chem Res Toxicol. 1994 May-Jun;7(3):352–357. doi: 10.1021/tx00039a012. [DOI] [PubMed] [Google Scholar]
  14. Field J. A., de Jong E., Feijoo Costa G., de Bont J. A. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol. 1992 Jul;58(7):2219–2226. doi: 10.1128/aem.58.7.2219-2226.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gold M. H., Alic M. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev. 1993 Sep;57(3):605–622. doi: 10.1128/mr.57.3.605-622.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hammel K. E., Gai W. Z., Green B., Moen M. A. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Jun;58(6):1832–1838. doi: 10.1128/aem.58.6.1832-1838.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heitkamp M. A., Freeman J. P., Miller D. W., Cerniglia C. E. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol. 1988 Oct;54(10):2556–2565. doi: 10.1128/aem.54.10.2556-2565.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerem Z., Friesem D., Hadar Y. Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Apr;58(4):1121–1127. doi: 10.1128/aem.58.4.1121-1127.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Miura R., Honmaru S., Nakazaki M. The absolute configurations of the metabolites of naphthalene and phenanthrene in mammalian systems. Tetrahedron Lett. 1968 Oct;(50):5271–5274. doi: 10.1016/s0040-4039(00)89839-1. [DOI] [PubMed] [Google Scholar]
  20. Moen M. A., Hammel K. E. Lipid Peroxidation by the Manganese Peroxidase of Phanerochaete chrysosporium Is the Basis for Phenanthrene Oxidation by the Intact Fungus. Appl Environ Microbiol. 1994 Jun;60(6):1956–1961. doi: 10.1128/aem.60.6.1956-1961.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Narro M. L., Cerniglia C. E., Van Baalen C., Gibson D. T. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol. 1992 Apr;58(4):1351–1359. doi: 10.1128/aem.58.4.1351-1359.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nordqvist M., Thakker D. R., Vyas K. P., Yagi H., Levin W., Ryan D. E., Thomas P. E., Conney A. H., Jerina D. M. Metabolism of chrysene and phenanthrene to bay-region diol epoxides by rat liver enzymes. Mol Pharmacol. 1981 Jan;19(1):168–178. [PubMed] [Google Scholar]
  23. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  24. Pipe R. K., Moore M. N. Arylsulphatase activity associated with phenanthrene induced digestive cell deletion in the marine mussel Mytilus edulis. Histochem J. 1986 Oct;18(10):557–564. doi: 10.1007/BF01675197. [DOI] [PubMed] [Google Scholar]
  25. Sack U., Günther T. Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J Basic Microbiol. 1993;33(4):269–277. doi: 10.1002/jobm.3620330411. [DOI] [PubMed] [Google Scholar]
  26. Savino J. F., Tanabe L. L. Sublethal effects of phenanthrene, nicotine, and pinane on Daphnia pulex. Bull Environ Contam Toxicol. 1989 May;42(5):778–784. doi: 10.1007/BF01700403. [DOI] [PubMed] [Google Scholar]
  27. Sutherland J. B., Freeman J. P., Selby A. L., Fu P. P., Miller D. W., Cerniglia C. E. Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch Microbiol. 1990;154(3):260–266. doi: 10.1007/BF00248965. [DOI] [PubMed] [Google Scholar]
  28. Sutherland J. B., Fu P. P., Yang S. K., Von Tungeln L. S., Casillas R. P., Crow S. A., Cerniglia C. E. Enantiomeric Composition of the trans-Dihydrodiols Produced from Phenanthrene by Fungi. Appl Environ Microbiol. 1993 Jul;59(7):2145–2149. doi: 10.1128/aem.59.7.2145-2149.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sutherland J. B., Selby A. L., Freeman J. P., Evans F. E., Cerniglia C. E. Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol. 1991 Nov;57(11):3310–3316. doi: 10.1128/aem.57.11.3310-3316.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES