Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1977 Jun 15;164(3):621–633. doi: 10.1042/bj1640621

A spectrophotometric procedure for rapid and sensitive measurements of beta-oxidation. Demonstration of factors that can be rate-limiting for beta-oxidation.

H Osmundsen, J Bremer
PMCID: PMC1164840  PMID: 883956

Abstract

1. A spectrophotometric direct-reading assay for measurements of beta-oxidation by intact mitochondria is described. The procedure relies on the ability of ferricyanide to trap reducing equivalents generated by the acyl-CoA dehydrogenases (EC 1.3.99.3). The reduction of ferricyanide was recorded by using a dual-wavelength spectrophotometer. 2. Oxaloacetate or acetoacetate was used to stimulate the rate of beta-oxidation by rotenone-blocked mitochondria. Although both were effective with rat liver mitochondria, oxaloacetate gave about 75% more stimulation. With heart or kidney mitochondria, only oxaloacetate gave marked stimulation. Acetoacetate had no stimulatory effect with heart mitochondria, but a small stimulatory effect on the rate of beta-oxidation by kidney mitochondria. 3. The stoicheiometry of beta-oxidation-dependent reduction of ferricyanide was examined, and good correlations were found between experimental and theoretical amounts of ferricyanide reduced. 4. Ferricyanide appears as efficient a final electron acceptor as O2. With ferricyanide the rate of beta-oxidation by heart mitochondria can be measured without interference from the oxidation of tricarboxylic acid-cycle intermediates.

Full text

PDF
621

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bremer J., Davis E. J. Phosphorylation coupled to acyl-coenzyme A dehydrogenase-linked oxidation of fatty acids by liver and heart mitochondria. Biochim Biophys Acta. 1972 Sep 20;275(3):298–301. doi: 10.1016/0005-2728(72)90210-1. [DOI] [PubMed] [Google Scholar]
  2. Bremer J., Wojtczak A. B. Factors controlling the rate of fatty acid -oxidation in rat liver mitochondria. Biochim Biophys Acta. 1972 Dec 8;280(4):515–530. doi: 10.1016/0005-2760(72)90131-2. [DOI] [PubMed] [Google Scholar]
  3. CLELAND W. W. Computer programmes for processing enzyme kinetic data. Nature. 1963 May 4;198:463–465. doi: 10.1038/198463a0. [DOI] [PubMed] [Google Scholar]
  4. Christophersen B. O., Bremer J. Erucic acid--an inhibitor of fatty acid oxidation in the heart. Biochim Biophys Acta. 1972 Dec 8;280(4):506–514. doi: 10.1016/0005-2760(72)90130-0. [DOI] [PubMed] [Google Scholar]
  5. Christophersen B. O., Christiansen R. Z. Studies on the mechanism of the inhibitory effects of erucylcarnitine in rat heart mitochondria. Biochim Biophys Acta. 1975 Jun 23;388(3):402–412. doi: 10.1016/0005-2760(75)90099-5. [DOI] [PubMed] [Google Scholar]
  6. Connelly J. L., Danner D. J., Bowden J. A. Branched chain alpha-keto acid metabolism. I. Isolation, purification, and partial characterization of bovine liver alpha-ketoisocaproic:alpha-keto-beta-methylvaleric acid dehydrogenase. J Biol Chem. 1968 Mar 25;243(6):1198–1203. [PubMed] [Google Scholar]
  7. Davis E. J. The effect of pyruvate on cyclic oxidations by heart sarcosomes. Biochim Biophys Acta. 1967 Jul 5;143(1):26–36. doi: 10.1016/0005-2728(67)90106-5. [DOI] [PubMed] [Google Scholar]
  8. Flatmark T., Pedersen J. I. Brown adipose tissue mitochondria. Biochim Biophys Acta. 1975 Mar 31;416(1):53–103. doi: 10.1016/0304-4173(75)90013-0. [DOI] [PubMed] [Google Scholar]
  9. Garland P. B., Chance B., Ernster L., Lee C. P., Wong D. Flavoproteins of mitochondrial fatty acid oxidation. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1696–1702. doi: 10.1073/pnas.58.4.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HALL L. M. Preparation of crystalline lithium acetoacetate. Anal Biochem. 1962 Jan;3:75–80. doi: 10.1016/0003-2697(62)90046-5. [DOI] [PubMed] [Google Scholar]
  11. Kean E. A. Improved method for isolation of hypoglycins A and B from fruit of Blighia sapida. J Pharm Pharmacol. 1974 Aug;26(8):639–640. doi: 10.1111/j.2042-7158.1974.tb10678.x. [DOI] [PubMed] [Google Scholar]
  12. Klingenberg M. Localization of the glycerol-phosphate dehydrogenase in the outer phase of the mitochondrial inner membrane. Eur J Biochem. 1970 Apr;13(2):247–252. doi: 10.1111/j.1432-1033.1970.tb00924.x. [DOI] [PubMed] [Google Scholar]
  13. LEHNINGER A. L., SUDDUTH H. C., WISE J. B. D-beta-Hydroxybutyric dehydrogenase of muitochondria. J Biol Chem. 1960 Aug;235:2450–2455. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. MYERS D. K., SLATER E. C. The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. I. Activities at different pH values. Biochem J. 1957 Dec;67(4):558–572. doi: 10.1042/bj0670558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mitchell P., Moyle J. Translocation of some anions cations and acids in rat liver mitochondria. Eur J Biochem. 1969 Jun;9(2):149–155. doi: 10.1111/j.1432-1033.1969.tb00588.x. [DOI] [PubMed] [Google Scholar]
  17. Osmundsen H., Sherratt H. S. A novel mechanism for inhibition of beta-oxidation by methylenecyclopropylacetyl-CoA, a metabolite of hypoglycin. FEBS Lett. 1975 Jul 15;55(1):38–41. doi: 10.1016/0014-5793(75)80951-3. [DOI] [PubMed] [Google Scholar]
  18. Podack E. R., Seubert W. On the mechanism of malonyl-CoA independent fatty acid synthesis. II. Isolation, properties and subcellular location of trans-2,3-hexenoyl-CoA and trans-2,3-decenoyl-CoA reductase. Biochim Biophys Acta. 1972 Oct 5;280(2):235–247. [PubMed] [Google Scholar]
  19. Quastel J. H., Wheatley A. H. Anaerobic oxidations. On ferricyanide as a reagent for the manometric investigation of dehydrogenase systems. Biochem J. 1938 May;32(5):936–943. doi: 10.1042/bj0320936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stanley K. K., Tubbs P. K. The role of intermediates in mitochondrial fatty acid oxidation. Biochem J. 1975 Jul;150(1):77–88. doi: 10.1042/bj1500077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. WALTER P., LARDY H. A. EFFECT OF ANTIMYCIN A ON OXIDATIVE PHOSPHORYLATION WITH FERRICYANIDE AS ELECTRON ACCEPTOR. Biochemistry. 1964 Jun;3:812–816. doi: 10.1021/bi00894a015. [DOI] [PubMed] [Google Scholar]
  22. Williamson D. H., Bates M. W., Page M. A., Krebs H. A. Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem J. 1971 Jan;121(1):41–47. doi: 10.1042/bj1210041. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES