Abstract
Deletion of the first 289 amino acids of the DNA polymerase from Thermus aquaticus (Taq polymerase) removes the 5' to 3' exonuclease domain to yield the thermostable Stoffel polymerase fragment (Lawyer et al., 1989). Preliminary N-terminal truncation studies of the Stoffel fragment suggested that removal of an additional 12 amino acids (the Stof delta 12 mutant) had no significant effect on activity or stability, but that the further truncation of the protein (the Stof delta 47, in which 47 amino acids were deleted), resulted in a significant loss of both activity and thermostability. A 33-amino acid synthetic peptide, based on this critical region (i.e., residues 303-335 inclusive), was able to restore 85% of the Stof delta 12 activity when added back to the truncated Stof delta 47 protein as well as return the temperature optimum to that of the Stof delta 12 and Stoffel proteins. Examination of the crystal structure of Taq polymerase (Kim et al., 1995) shows that residues 302-336 of the enzyme form a three-stranded beta-sheet structure that interacts with the remainder of the protein. CD analysis of the 33-amino acid peptide indicates that the free peptide also adopts an ordered structure in solution with more than 50% beta-sheet content. These data suggest that this 33-amino acid peptide constitutes a stable beta-sheet structure capable of rescuing the truncated polymerase in a fashion analogous to the well-documented complementation of Ribonuclease S protein by the 15-residue, alpha-helical, S peptide.
Full Text
The Full Text of this article is available as a PDF (4.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes W. M. The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene. 1992 Mar 1;112(1):29–35. doi: 10.1016/0378-1119(92)90299-5. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Eom S. H., Wang J., Steitz T. A. Structure of Taq polymerase with DNA at the polymerase active site. Nature. 1996 Jul 18;382(6588):278–281. doi: 10.1038/382278a0. [DOI] [PubMed] [Google Scholar]
- Erlich H. A., Gelfand D., Sninsky J. J. Recent advances in the polymerase chain reaction. Science. 1991 Jun 21;252(5013):1643–1651. doi: 10.1126/science.2047872. [DOI] [PubMed] [Google Scholar]
- Hearn R. P., Richards F. M., Sturtevant J. M., Watt G. D. Thermodynamics of the binding of S-peptide to S-protein to form ribonuclease S.. Biochemistry. 1971 Mar 2;10(5):806–817. doi: 10.1021/bi00781a013. [DOI] [PubMed] [Google Scholar]
- Kim Y., Eom S. H., Wang J., Lee D. S., Suh S. W., Steitz T. A. Crystal structure of Thermus aquaticus DNA polymerase. Nature. 1995 Aug 17;376(6541):612–616. doi: 10.1038/376612a0. [DOI] [PubMed] [Google Scholar]
- Langley K. E., Villarejo M. R., Fowler A. V., Zamenhof P. J., Zabin I. Molecular basis of beta-galactosidase alpha-complementation. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1254–1257. doi: 10.1073/pnas.72.4.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawyer F. C., Stoffel S., Saiki R. K., Myambo K., Drummond R., Gelfand D. H. Isolation, characterization, and expression in Escherichia coli of the DNA polymerase gene from Thermus aquaticus. J Biol Chem. 1989 Apr 15;264(11):6427–6437. [PubMed] [Google Scholar]
- Nicholson H., Becktel W. J., Matthews B. W. Enhanced protein thermostability from designed mutations that interact with alpha-helix dipoles. Nature. 1988 Dec 15;336(6200):651–656. doi: 10.1038/336651a0. [DOI] [PubMed] [Google Scholar]
- Numata K., Muro M., Akutsu N., Nosoh Y., Yamagishi A., Oshima T. Thermal stability of chimeric isopropylmalate dehydrogenase genes constructed from a thermophile and a mesophile. Protein Eng. 1995 Jan;8(1):39–43. doi: 10.1093/protein/8.1.39. [DOI] [PubMed] [Google Scholar]
- Polesky A. H., Steitz T. A., Grindley N. D., Joyce C. M. Identification of residues critical for the polymerase activity of the Klenow fragment of DNA polymerase I from Escherichia coli. J Biol Chem. 1990 Aug 25;265(24):14579–14591. [PubMed] [Google Scholar]
- Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
- RICHARDS F. M., VITHAYATHIL P. J. The preparation of subtilisn-modified ribonuclease and the separation of the peptide and protein components. J Biol Chem. 1959 Jun;234(6):1459–1465. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schafmeister C. E., Miercke L. J., Stroud R. M. Structure at 2.5 A of a designed peptide that maintains solubility of membrane proteins. Science. 1993 Oct 29;262(5134):734–738. doi: 10.1126/science.8235592. [DOI] [PubMed] [Google Scholar]
- Stark M. J. Multicopy expression vectors carrying the lac repressor gene for regulated high-level expression of genes in Escherichia coli. Gene. 1987;51(2-3):255–267. doi: 10.1016/0378-1119(87)90314-3. [DOI] [PubMed] [Google Scholar]
- Tozawa K., Odaka M., Date T., Yoshida M. Molecular dissection of the beta subunit of F1-ATPase into peptide fragments. J Biol Chem. 1992 Aug 15;267(23):16484–16490. [PubMed] [Google Scholar]
- Varadarajan R., Richards F. M. Crystallographic structures of ribonuclease S variants with nonpolar substitution at position 13: packing and cavities. Biochemistry. 1992 Dec 15;31(49):12315–12327. doi: 10.1021/bi00164a005. [DOI] [PubMed] [Google Scholar]
- Williams K. P., Shoelson S. E. Cooperative self-assembly of SH2 domain fragments restores phosphopeptide binding. Biochemistry. 1993 Oct 26;32(42):11279–11284. doi: 10.1021/bi00093a003. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Boyko R. F., Willard L., Richards F. M., Sykes B. D. SEQSEE: a comprehensive program suite for protein sequence analysis. Comput Appl Biosci. 1994 Apr;10(2):121–132. doi: 10.1093/bioinformatics/10.2.121. [DOI] [PubMed] [Google Scholar]
- Yang Y. R., Schachman H. K. In vivo formation of active aspartate transcarbamoylase from complementing fragments of the catalytic polypeptide chains. Protein Sci. 1993 Jun;2(6):1013–1023. doi: 10.1002/pro.5560020614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
