Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1977 Sep;88(3):635–654.

The Pulmonary Vascular Pathology of Experimental Radiation Pneumonitis

David O Slauson, Fletcher F Hahn, Thomas L Chiffelle
PMCID: PMC2032377  PMID: 888911

Abstract

Dogs exposed by inhalation to an aerosol of fused aluminosilicate particles containing the radionuclide yttrium 90 developed radiation pneumonitis. The aerosol had a mean aerodynamic diameter of 0.8 to 1.2 μ with a σg of 1.6 to 1.9. The 36 dogs included in this report received initial lung burdens of 590 to 5200 μCi 90Y/kg body weight and died at 7.5 to 237 days after exposure with total cumulative radiation doses to lung of 9300 to 70,000 rads. Vascular lesions in the lungs were marked. Early changes included edema of vessel walls with leukocytic infiltration, dilation of perivascular lymphatic channels, and occasional periarterial lymphangiectasia. Splitting and reduplication of the elastica were occasionally visible. The most striking inflammatory vascular changes were vasculitis and fibrinoid necrosis, which involved bronchial and pulmonary vessels at some-what different times. Such lesions were often segmental and included fibrinoid necrosis and a variable leukocytic infiltrate in and around the actively involved lesions. Vasculitis was most commonly seen in small muscular arterioles, but veins and venules also occasionally exhibited similar inflammatory lesions. Progressive vascular inflammation led to extensive intimal proliferative lesions and fibromuscular hypertrophy with eventual fibrous accumulation around blood vessels, obliterative intimal and medial thickening, and luminal narrowing. Such changes eventually formed the morphologic basis for increased pulmonary vascular resistance and the development of cardiac dilation and hypertrophy reflecting pulmonary hypertension.

Full text

PDF
635

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARIAS-STELLA J., RECAVARREN S. Right ventricular hypertrophy in native children living at high altitude. Am J Pathol. 1962 Jul;41:55–64. [PMC free article] [PubMed] [Google Scholar]
  2. Benson E. P. Radiation injury to large arteries. 3. Further examples with prolonged asymptomatic intervals. Radiology. 1973 Jan;106(1):195–197. doi: 10.1148/106.1.195. [DOI] [PubMed] [Google Scholar]
  3. Bielfelt S. W., Wilson A. J., Redman H. C., McClellan R. O., Rosenblatt L. S. A breeding program for the establishment and maintenance of a stable gene pool in a Beagle dog colony to be utilized for long-term experiments. Am J Vet Res. 1969 Dec;30(12):2221–2229. [PubMed] [Google Scholar]
  4. DAGHER I. K., MISHALANY H. G., SIMEONE F. A., WILSON J. L. Mechanisms of pulmonary hypertension in acute hypoxia. J Thorac Cardiovasc Surg. 1961 Dec;42:743–754. [PubMed] [Google Scholar]
  5. DE FRAITURE W. H. Een zeldzame oorzaak van chronisch cor pulmonale. Ned Tijdschr Geneeskd. 1957 Mar 2;101(9):399–401. [PubMed] [Google Scholar]
  6. HARRIS P. Influence of acetylcholine on the pulmonary arterial pressure. Br Heart J. 1957 Apr;19(2):272–278. doi: 10.1136/hrt.19.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HEPPLESTON A. G. The pathology of honeycomb lung. Thorax. 1956 Jun;11(2):77–93. doi: 10.1136/thx.11.2.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hampton J. C., Rosario B. Permeability of arterial internal elastic laminae in irradiated mice. Exp Mol Pathol. 1972 Dec;17(3):307–316. doi: 10.1016/0014-4800(72)90043-3. [DOI] [PubMed] [Google Scholar]
  9. Hasleton P. S., Heath D., Brewer D. B. Hypertensive pulmonary vascular disease in states of chronic hypoxia. J Pathol Bacteriol. 1968 Apr;95(2):431–440. doi: 10.1002/path.1700950213. [DOI] [PubMed] [Google Scholar]
  10. Hayward R. H. Arteriosclerosis induced by radiation. Surg Clin North Am. 1972 Apr;52(2):359–366. doi: 10.1016/s0039-6109(16)39688-8. [DOI] [PubMed] [Google Scholar]
  11. Hobbs C. H., Barnes J. E., McClellan R. O., Chiffelle T. L., Jones R. K., Lundgren D. L., Mauderly J. L., Pickrell J. A., Rypka E. W. Toxicity in the dog of inhaled 90 Y in fused clay particles: early biological effects. Radiat Res. 1972 Feb;49(2):430–460. [PubMed] [Google Scholar]
  12. JENNINGS F. L., ARDEN A. Development of experimental radiation pneumonitis. Arch Pathol. 1961 Apr;71:437–446. [PubMed] [Google Scholar]
  13. JENNNINGS F. L., ARDEN A. Development of radiation pneumonitis. Time and dose factors. Arch Pathol. 1962 Oct;74:351–360. [PubMed] [Google Scholar]
  14. Kanapilly G. M., Newton G. J. A new method for the separation of multicurie quantities of 90 Y from 90 Sr. Int J Appl Radiat Isot. 1971 Sep;22(9):567–575. doi: 10.1016/0020-708x(71)90056-1. [DOI] [PubMed] [Google Scholar]
  15. Kurohara S. S., Casarett G. W. Effects of single thoracic x-ray exposure in rats. Radiat Res. 1972 Nov;52(2):263–290. [PubMed] [Google Scholar]
  16. Louis E. L., McLoughlin M. J., Wortzman G. Chronic damage to medium and large arteries following irradiation. J Can Assoc Radiol. 1974 Jun;25(2):94–104. [PubMed] [Google Scholar]
  17. Madrazo A., Suzuki Y., Churg J. Radiation pneumonitis. Ultrastructural changes in the pulmonary alveoli following high doses of radiation. Arch Pathol. 1973 Oct;96(4):262–268. [PubMed] [Google Scholar]
  18. NAEYE R. L. Alveolar hypoventilation and cor pulmonale secondary to damage to the respiratory center. Am J Cardiol. 1961 Sep;8:416–419. doi: 10.1016/0002-9149(61)90161-8. [DOI] [PubMed] [Google Scholar]
  19. NAEYE R. L. Hypoxemia and pulmonary hypertension. A study of the pulmonary vasculature. Arch Pathol. 1961 Apr;71:447–452. [PubMed] [Google Scholar]
  20. NAEYE R. L. Kyphoscoliosis and cor pulmonale; a study of the pulmonary vascular bed. Am J Pathol. 1961 May;38:561–573. [PMC free article] [PubMed] [Google Scholar]
  21. Phillips T. L. An ultrastructural study of the development of radiation injury in the lung. Radiology. 1966 Jul;87(1):49–54. doi: 10.1148/87.1.49. [DOI] [PubMed] [Google Scholar]
  22. Pickrell J. A., Harris D. V., Mauderly J. L., Hahn F. F. Altered collagen metabolism in radiation-induced interstitial pulmonary fibrosis. Chest. 1976 Feb;69(2 Suppl):311–316. doi: 10.1378/chest.69.2.311. [DOI] [PubMed] [Google Scholar]
  23. Poon T. P., Kanshepolsky J., Tchertkoff V. Rupture of the aorta due to radiation injury. Report of a case and electron microscopic study. JAMA. 1968 Sep 16;205(12):875–878. [PubMed] [Google Scholar]
  24. Redman H., Wilson A. J., Biefelt S. W., McClellan R. O. Beagle dog production experience at the Fission Product Inhalation Program (1961-1968). Lab Anim Care. 1970 Feb;20(1):61–68. [PubMed] [Google Scholar]
  25. Reinhold H. S., Buisman G. H. Radiosensitivity of capillary endothelium. Br J Radiol. 1973 Jan;46(541):54–57. doi: 10.1259/0007-1285-46-541-54. [DOI] [PubMed] [Google Scholar]
  26. Slauson D. O., Hahn F. F., Benjamin S. A., Chiffelle T. L., Jones R. K. Inflammatory sequences in acute pulmonary radiation injury. Am J Pathol. 1976 Mar;82(3):549–572. [PMC free article] [PubMed] [Google Scholar]
  27. Stetson C. G., Boland J. Experimental radiation pneumonitis. Radiographic and pathologic correlation. Cancer. 1967 Dec;20(12):2170–2183. doi: 10.1002/1097-0142(196712)20:12<2170::aid-cncr2820201216>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  28. VALDIVIA E. Right ventricular hypertrophy in guinea pigs exposed to simulated high altitude. Circ Res. 1957 Nov;5(6):612–616. doi: 10.1161/01.res.5.6.612. [DOI] [PubMed] [Google Scholar]
  29. WILL D. H., ALEXANDER A. F., REEVES J. T., GROVER R. F. High altitude-induced pulmonary hypertension in normal cattle. Circ Res. 1962 Feb;10:172–177. doi: 10.1161/01.res.10.2.172. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES