Abstract
Germ tube formation by Candida albicans is at least partially controlled by a product(s) of the yeast phase of the organism which is released from cells upon incubation at 37 degrees C in tissue culture medium or fetal calf serum. This germination regulatory substance is stable under conditions of lyophilization and heating of 70 degrees C, but becomes inactivated at pH values of 4.0 and 9.5. A germination regulatory substance was produced by both strains of C. albicans tested and by a strain of C. tropicalis. Production does not appear to be a universal characteristic of yeasts because the factor could not be recovered from either Cryptococcus laurentii or Candida parapsilosis. Previously described C. albicans germination inhibitors such as cysteine, tryptophol, and phenylethyl alcohol appear not to be the substance described here. Because of the ability of the factor to influence C. albicans morphology, we have designated it morphogenic autoregulatory substance.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auger P., Joly J. Factors influencing germ tube production in Candida albicans. Mycopathologia. 1977 Oct 28;61(3):183–186. doi: 10.1007/BF00468014. [DOI] [PubMed] [Google Scholar]
- Boguslawski G., Medoff G., Schlessinger D., Kobayashi G. S. Histin, an RNA polymerase inhibitor isolated from Histoplasma capsulatum. Biochem Biophys Res Commun. 1975 May 19;64(2):625–632. doi: 10.1016/0006-291x(75)90367-8. [DOI] [PubMed] [Google Scholar]
- Chattaway F. W., Bishop R., Holmes M. R., Odds F. C., Barlow A. J. Enzyme activities associated with carbohydrate synthesis and breakdown in the yeast and mycelial forms of Candida albicans. J Gen Microbiol. 1973 Mar;75(1):97–109. doi: 10.1099/00221287-75-1-97. [DOI] [PubMed] [Google Scholar]
- EISMAN P. C., GEFTIC S. G., MAYER R. L. Virulence in mice of colonial variants of Candida albicans. Proc Soc Exp Biol Med. 1953 Feb;82(2):263–264. doi: 10.3181/00379727-82-20086. [DOI] [PubMed] [Google Scholar]
- Evans E. G., Odds F. C., Holland K. T. Resistance of the Candida albicans filamentous cycle to environmental change. Sabouraudia. 1975 Jul;13(2):231–238. [PubMed] [Google Scholar]
- Evans E. G., Odds F. C., Richardson M. D., Holland K. T. Optimum conditions for initiation of filamentation in Candida albicans. Can J Microbiol. 1975 Mar;21(3):338–342. doi: 10.1139/m75-048. [DOI] [PubMed] [Google Scholar]
- GEBHARDT L. P., HILL D. W. Morphological transformation of Candida albicans in tissues of mice. Proc Soc Exp Biol Med. 1956 Jul;92(3):640–644. doi: 10.3181/00379727-92-22570. [DOI] [PubMed] [Google Scholar]
- Joshi K. R., Bremner D. A., Gavin J. B., Herdson P. B., Parr D. N. The formation of germ tubes by Candida albicans in sheep serum and trypticase soya broth. Am J Clin Pathol. 1973 Dec;60(6):839–842. doi: 10.1093/ajcp/60.6.839. [DOI] [PubMed] [Google Scholar]
- LANDAU J. W., DABROWA N., NEWCOMER V. D. THE RAPID FORMATION IN SERUM OF FILAMENTS BY CANDIDA ALBICANS. J Invest Dermatol. 1965 Mar;44:171–179. [PubMed] [Google Scholar]
- Land G. A., McDonald W. C., Stjernholm R. L., Friedman T. L. Factors affecting filamentation in Candida albicans: relationship of the uptake and distribution of proline to morphogenesis. Infect Immun. 1975 May;11(5):1014–1023. doi: 10.1128/iai.11.5.1014-1023.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lingappa B. T., Lingappa Y. The nature of self-inhibition of germination of conidia of Glomerella cingulata. J Gen Microbiol. 1966 Apr;43(1):91–100. doi: 10.1099/00221287-43-1-91. [DOI] [PubMed] [Google Scholar]
- Lingappa B. T., Prasad M., Lingappa Y., Hunt D. F., Biemann K. Phenethyl alcohol and tryptophol: autoantibiotics produced by the fungus Candida albicans. Science. 1969 Jan 10;163(3863):192–194. doi: 10.1126/science.163.3863.192. [DOI] [PubMed] [Google Scholar]
- Mackenzie D. W. Morphogenesis of Candida albicans in vivo. Sabouraudia. 1964 Jun;3(3):225–232. [PubMed] [Google Scholar]
- Macko V., Staples R. C., Gershon H., Renwick J. A. Self-inhibitor of bean rust uredospores: methyl 3,4-dimethoxycinnamate. Science. 1970 Oct 30;170(3957):539–540. doi: 10.1126/science.170.3957.539. [DOI] [PubMed] [Google Scholar]
- Ogletree F. F., Abdelal A. T., Ahearn D. G. Germ-tube formation by atypical strains of Candida albicans. Antonie Van Leeuwenhoek. 1978;44(1):15–24. doi: 10.1007/BF00400073. [DOI] [PubMed] [Google Scholar]
- Saltarelli C. G. Growth stimulation and inhibition of Candida albicans by metabolic by-products. Mycopathol Mycol Appl. 1973 Sep 28;51(1):53–63. doi: 10.1007/BF02141285. [DOI] [PubMed] [Google Scholar]
- TASCHDJIAN C. L., REISS F., KOZINN P. J. Experimental vaginal candidiasis in mice; its implications for superficial candidiasis in humans. J Invest Dermatol. 1960 Feb;34:89–94. [PubMed] [Google Scholar]
- WINSTEN S., MURRAY T. J. Virulence enhancement of a filamentous strain of Candida albicans after growth on media containing cysteine. J Bacteriol. 1956 Jun;71(6):738–738. doi: 10.1128/jb.71.6.738-738.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wain W. H., Price M. F., Cawson R. A. A re-evaluation of the effect of cysteine or Candida albicans. Sabouraudia. 1975 Mar;13(Pt 1):74–82. [PubMed] [Google Scholar]
- YOUNG G. The process of invasion and the persistence of Candida albicans injected intraperitoneally into mice. J Infect Dis. 1958 Mar-Apr;102(2):114–120. doi: 10.1093/infdis/102.2.114. [DOI] [PubMed] [Google Scholar]
