Skip to main content
The British Journal of Surgery logoLink to The British Journal of Surgery
. 1996 Sep 1;83(9):1186–1196. doi: 10.1046/j.1365-2168.1996.02445.x

Sepsis and fat metabolism

J S Samra 1, L K M Summers 2, K N Frayn 3,
PMCID: PMC11440814  PMID: 8983604

Abstract

Sepsis is a common surgical problem which can induce profound changes in the plasma concentrations of cytokines and hormones, leading to a catabolic state. Hypertriglyceridaemia and increased fat oxidation are the main features of altered fat metabolism encountered in this state. The endogenous catabolism of sepsis can be reduced by administering exogenous lipid emulsions as a source of metabolic fuel, although the changes in lipid metabolism associated with sepsis may affect the handling of these exogenous lipids. An exciting area for future research is an examination of the ability of lipid emulsions to reduce the morbidity and mortality associated with sepsis by altering immune responses, in addition to limiting catabolism.

Contributor Information

J S Samra, Oxford Lipid Metabolism Group, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford OX2 6HE, UK.

L K M Summers, Oxford Lipid Metabolism Group, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford OX2 6HE, UK.

Dr K N Frayn, Oxford Lipid Metabolism Group, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford OX2 6HE, UK.

References

  • 1. Le Gall  JR, Lemeshow  S, Leleu  G  et al.  Customized probability models for early severe sepsis in adult intensive care patients. Intensive Care Unit Scoring Group. JAMA  1995; 273: 644–50. [PubMed] [Google Scholar]
  • 2. Parrillo  JE, Parker  MM, Natanson  C  et al.  Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med  1990; 113: 227–42. [DOI] [PubMed] [Google Scholar]
  • 3. Ziegler  TR, Young  LS, Manson  JM, Wilmore  DW. Metabolic effects of recombinant human growth hormone in patients receiving parenteral nutrition. Ann Surg  1988; 208: 6–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4. Banerjee  S, Bhaduri  JN. Serum protein-bound carbohydrates and lipids in cholera. Proc Soc Exp Biol Med  1959; 101: 340–1. [DOI] [PubMed] [Google Scholar]
  • 5. Gallin  JI, Kaye  D, O'Leary  WM. Serum lipids in infection. N Engl J Med  1969; 281: 1081–6. [DOI] [PubMed] [Google Scholar]
  • 6. Alvarez  C, Ramos  A. Lipids, lipoproteins, and apoproteins in serum during infection. Clin Chem  1986; 32: 142–5. [PubMed] [Google Scholar]
  • 7. Carpentier  YA, Askanazi  J, Elwyn  DH  et al.  Effects of hypercaloric glucose infusion on lipid metabolism in injury and sepsis. J Trauma  1979; 19: 649–54. [DOI] [PubMed] [Google Scholar]
  • 8. Shaw  JHF, Wolfe  RR. Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding. Ann Surg  1987; 205: 368–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9. Knaus  WA, Harrell  FE, Fisher  CJ  Jr  et al.  The clinical evaluation of new drugs for sepsis. A prospective study design based on survival analysis. JAMA  1993; 270: 1233–41. [PubMed] [Google Scholar]
  • 10. Ambrose  NS, Johnson  M, Burdon  DW, Keighley  MRB. Incidence of pathogenic bacteria from mesenteric lymph nodes and ileal serosa during Crohn's disease surgery. Br J Surg  1984; 71: 623–5. [DOI] [PubMed] [Google Scholar]
  • 11. Walker  WA. Role of the mucosal barrier in toxin/microbial attachment to the gastrointestinal tract. Ciba Found Symp (112) 1985; 34–47. [DOI] [PubMed]
  • 12. Eade  MN, Brooke  BN. Portal bacteraemia in cases of ulcerative colitis submitted to colectomy. Lancet  1969; i: 1008–9. [DOI] [PubMed] [Google Scholar]
  • 13. Wellmann  W, Fink  PC, Benner  F, Schmidt  FW. Endotoxaemia in active Crohn's disease. Treatment with whole gut irrigation and 5-aminosalicylic acid. Gut  1986; 27: 814–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14. Gardiner  KR, Erwin  PJ, Anderson  NH, Barr  JG, Halliday  MI, Rowlands  BJ. Colonic bacteria and bacterial translocation in experimental colitis. Br J Surg  1993; 80: 512–16. [DOI] [PubMed] [Google Scholar]
  • 15. Baker  JW, Deitch  EA, Li  M, Berg  RD, Specian  RD. Hemorrhagic shock induces bacterial translocation from the gut. J Trauma  1988; 28: 896–906. [DOI] [PubMed] [Google Scholar]
  • 16. Koziol  JM, Rush  BF  Jr, Smith  SM, Machiedo  GW. Occurrence of bacteremia during and after hemorrhagic shock. J Trauma  1988; 28: 10–16. [PubMed] [Google Scholar]
  • 17. Jiang  J, Bahrami  S, Leichtfried  G, Redl  H, Ohlinger  W, Schlag  G. Kinetics of endotoxin and tumour necrosis factor appearance in portal and systemic circulation after hemorrhagic shock in rats. Ann Surg  1995; 221: 100–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18. Pape  H-C, Dwenger  A, Regel  G  et al.  Increased gut permeability after multiple trauma. Br J Surg  1994; 81: 850–2. [DOI] [PubMed] [Google Scholar]
  • 19. Haglund  U, Bulkley  GB, Granger  DN. On the pathophysiology of intestinal ischemic injury. Acta Chirurgica Scandinavica  1987; 153: 321–4. [PubMed] [Google Scholar]
  • 20. Deitch  EA. Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg  1992; 216: 117–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21. Tunn  UW, Thieme  H. Sepsis associated with urinary tract infection. Antibiotic treatment with piperacillin. Arch Intern Med  1982; 142: 2035–8. [PubMed] [Google Scholar]
  • 22. Marshall  JC, Christou  NV, Meakins  JL. The gastrointestinal tract. The ‘undrained abscess’ of multiple organ failure. Ann Surg  1993; 218: 111–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23. Danner  RL, Elin  RJ, Hosseini  JM, Wesley  RA, Reilly  JM, Parrillo  JE. Endotoxemia in human septic shock. Chest  1991; 99: 169–75. [DOI] [PubMed] [Google Scholar]
  • 24. Casey  LC, Balk  RA, Bone  RC. Plasma cytokine and endotoxin levels correlate with survival in patients with sepsis syndrome. Ann Intern Med  1993; 119: 771–8. [DOI] [PubMed] [Google Scholar]
  • 25. Goldie  AS, Fearon  KCH, Ross  JA  et al.  Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. The Sepsis Intervention Group. JAMA  1995; 274: 172–7. [PubMed] [Google Scholar]
  • 26. Kreger  BE, Craven  DE, McCabe  WR. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med  1980; 68: 344–55. [DOI] [PubMed] [Google Scholar]
  • 27. Hesse  DG, Tracey  KJ, Fong  Y  et al.  Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet  1988; 166: 147–53. [PubMed] [Google Scholar]
  • 28. Michie  HR, Manogue  KR, Spriggs  DR  et al.  Detection of circulating tumour necrosis factor after endotoxin administration. N Engl J Med  1988; 318: 1481–6. [DOI] [PubMed] [Google Scholar]
  • 29. Koopmans  R, Hoek  FJ, van Deventer  SJH, van der Poll  T. Model for whole body production of tumour necrosis factor-alpha in experimental endotoxaemia in healthy subjects. Clin Sci  1994; 87: 459–65. [DOI] [PubMed] [Google Scholar]
  • 30. Chrousos  GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med  1995; 332: 1351–62. [DOI] [PubMed] [Google Scholar]
  • 31. Michie  HR, Guillou  PJ, Wilmore  DW. Tumour necrosis factor and bacterial sepsis. Br J Surg  1989; 76: 670–1. [DOI] [PubMed] [Google Scholar]
  • 32. Dinarello  CA, Wolff  SM. The role of interleukin-1 in disease. N Engl J Med  1993; 328: 106–13. [DOI] [PubMed] [Google Scholar]
  • 33. van der Poll  T, Sauerwein  HP. Tumour necrosis factor-α: its role in the metabolic response to sepsis. Clin Sci  1993; 84: 247–56 (Editorial). [DOI] [PubMed] [Google Scholar]
  • 34. Moldawer  LL. Biology of proinflammatory cytokines and their antagonists. Crit Care Med  1994; 22: S3–7. [PubMed] [Google Scholar]
  • 35. Calandra  T, Baumgartner  JD, Grau  GE  et al.  Prognostic values of tumour necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch JS Immunoglobin Study Group. J Infect Dis  1990; 161: 982–7. [DOI] [PubMed] [Google Scholar]
  • 36. Takakuwa  T, Endo  S, Nakae  H  et al.  Plasma levels of TNF-alpha, endothelin-1 and thrombomodulin in patients with sepsis. Res Common Chem Pathol Pharmacol  1994; 84: 261–9. [PubMed] [Google Scholar]
  • 37. Pinsky  MR, Vincent  JL, Deviere  J, Alegre  M, Kahn  RJ, Dupont  E. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest  1993; 103: 565–75. [DOI] [PubMed] [Google Scholar]
  • 38. Keogh  C, Fong  Y, Marano  MA  et al.  Identification of a novel tumour necrosis factor alpha/cachectin from the livers of burned and infected rats. Arch Surg  1990; 125; 79–84. [DOI] [PubMed] [Google Scholar]
  • 39. Dofferhoff  ASM, Bom  VJJ, de Vries-Hospers  HG  et al.  Patterns of cytokines, plasma endotoxin, plasminogen activator inhibitor, and acute-phase proteins during the treatment of severe sepsis in humans. Crit Care Med  1992; 20: 185–92. [DOI] [PubMed] [Google Scholar]
  • 40. Ihle  JN. Signalling by the cytokine receptor superfamily. Trends in Endocrinology and Metabolism  1994; 5: 137–43. [DOI] [PubMed] [Google Scholar]
  • 41. Seckinger  P, Isaaz  S, Dayer  JM. A human inhibitor of tumour necrosis factor alpha. J Exp Med  1988; 167: 1511–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42. Arend  WP, Smith  MF  Jr, Janson  RW, Joslin  FG. IL-1 receptor antagonist and IL-1 beta production in human monocytes are regulated differently. J Immunol  1991; 147: 1530–6. [PubMed] [Google Scholar]
  • 43. Spinas  GA, Keller  U, Brockhaus  M. Release of soluble receptors for tumour necrosis factor (TNF) in relation to circulating TNF during experimental endotoxinemia. J Clin Invest  1992; 90: 533–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44. Espat  NJ, Rogy  MA, Copeland  EM, Moldawer  LL. CMNSG Guest Lecture. Interleukin-1, interleukin-1 receptor, and interleukin-1 receptor antagonist. Proc Nutr Soc  1994; 53: 393–400. [DOI] [PubMed] [Google Scholar]
  • 45. Ertel  W, Kremer  JP, Kenney  J  et al.  Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood  1995; 85: 1341–7. [PubMed] [Google Scholar]
  • 46. Marchant  A, Deviere  J, Byl  B, De Groote  D, Vincent  J-L, Goldman  M. Interleukin-10 production during septicaemia. Lancet  1994; 343: 707–8. [DOI] [PubMed] [Google Scholar]
  • 47. Imura  H, Fukata  J, Mori  T. Cytokines and endocrine function: an interaction between the immune and neuroendocrine systems. Clin Endocrinol  1991; 35: 107–15. [DOI] [PubMed] [Google Scholar]
  • 48. Koff  WC, Fann  AV, Dunegan  MA, Lachman  LB. Catecholamine-induced suppression of interleukin-1 production. Lymphokine Research  1986: 5: 239–47. [PubMed] [Google Scholar]
  • 49. Severn  A, Rapson  NT, Hunter  CA, Liew  FY. Regulation of tumor necrosis factor production by adrenaline and beta-adrenergic agonists. J Immunol  1992; 148: 3441–5. [PubMed] [Google Scholar]
  • 50. Barber  AE, Coyle  SM, Marano  MA  et al.  Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man. J Immunol  1993; 150: 1999–2006. [PubMed] [Google Scholar]
  • 51. Endres  S, van-der-Meer  JW, Dinarello  CA. Interleukin-1 in the pathogenesis of fever. Eur J Clin Invest  1987; 17: 469–74. [DOI] [PubMed] [Google Scholar]
  • 52. Gwosdow  AR, Kumar  MSA, Bode  HH. Interleukin 1 stimulation of the hypothalamic-pituitary-adrenal axis. Am J Physiol  1990; 258: E65–70. [DOI] [PubMed] [Google Scholar]
  • 53. Spath-Schwalbe  E, Born  J, Schrezenmeier  H  et al.  Interleukin-6 stimulates the hypothalamus-pituitary-adrenocortical axis in man. J Clin Endocrinol Metab  1994; 79: 1212–14. [DOI] [PubMed] [Google Scholar]
  • 54. Dejana  E, Breviario  F, Erroi  A  et al.  Modulation of endothelial cell functions by different molecular species of interleukin 1. Blood  1987; 69: 695–9. [PubMed] [Google Scholar]
  • 55. Fukushima  R, Saito  H, Taniwaka  K  et al.  Different roles of IL-1 and TNF on hemodynamics and interorgan amino acid metabolism in awake dogs. Am J Physiol  1992; 262: E275–81. [DOI] [PubMed] [Google Scholar]
  • 56. Hotamisligil  GS, Shargill  NS, Spiegelman  BM. Adipose expression of tumour necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science  1993; 259: 87–91. [DOI] [PubMed] [Google Scholar]
  • 57. Jones  EY, Stuart  DI, Walker  NPC. Structure of tumour necrosis factor. Nature  1989; 338: 225–8. [DOI] [PubMed] [Google Scholar]
  • 58. Scuderi  P, Sterling  KE, Lam  KS  et al.  Raised serum levels of tumour necrosis factor in parasitic infections. Lancet  1986; ii: 1364–5. [DOI] [PubMed] [Google Scholar]
  • 59. Englemann  H, Novick  D, Wallach  D. Two tumour necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumour necrosis factor receptors. J Biol Chem  1990; 265: 1531–6. [PubMed] [Google Scholar]
  • 60. Van der Poll  T, Romijn  JA, Endert  E, Borm  JJJ, Buller  HR, Sauerwein  HP. Tumour necrosis factor mimics the metabolic response to acute infection in healthy humans. Am J Physiol  1991; 261: E457–65. [DOI] [PubMed] [Google Scholar]
  • 61. Hauner  H, Petruschke  T, Russ  M, Rohrig  K, Eckel  J. Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of a newly-differentiated human fat cells in cell culture. Diabetologia  1995; 38: 764–71. [DOI] [PubMed] [Google Scholar]
  • 62. Stouthard  JML, Romijn  JA, Van der Poll  T  et al.  Endocrinologic and metabolic effects on interleukin-6 in humans. Am J Physiol  1995; 268: E813–19. [DOI] [PubMed] [Google Scholar]
  • 63. Beddoe  AH, Streat  SJ, Hill  GL. Evaluation of an in vivo prompt gamma neutron activation facility for body composition studies in critically ill intensive care patients: results on 41 normals. Metabolism  1984; 33: 270–80. [DOI] [PubMed] [Google Scholar]
  • 64. Frayn  KN, Shadid  S, Hamlani  R  et al.  Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am J Physiol  1994; 266: E308–17. [DOI] [PubMed] [Google Scholar]
  • 65. Frayn  KN, Coppack  SW, Fielding  BA, Humphreys  SM. Coordinated regulation of hormone-sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilization. Adv Enzyme Regul  1995; 35: 163–78. [DOI] [PubMed] [Google Scholar]
  • 66. Sidossis  LS, Coggan  AR, Gastaldelli  A, Wolfe  RR. Pathway of free fatty acid oxidation in human subjects. Implications for tracer studies. J Clin Invest  1995; 95: 278–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67. Dagenais  GR, Tancredi  RG, Zierler  KL. Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm. J Clin Invest  1976; 58: 421–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68. Robin  AP, Askanazi  J, Greenwood  MRC, Carpentier  YA, Gump  FE, Kinney  JM. Lipoprotein lipase activity in surgical patients: influence of trauma and infection. Surgery  1981; 90: 401–8. [PubMed] [Google Scholar]
  • 69. Lithell  H, Boberg  J, Hellsing  K, Lundqvist  G, Vessby  G. Lipoprotein-lipase activity in human skeletal muscle and adipose tissue in fasting and the fed states. Atherosclerosis  1978; 30: 89–94. [DOI] [PubMed] [Google Scholar]
  • 70. Eckel  RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med  1989; 320: 1060–8. [DOI] [PubMed] [Google Scholar]
  • 71. Lafontan  M, Berlan  M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res  1993; 34: 1057–91. [PubMed] [Google Scholar]
  • 72. Cuthbertson  DP. Observations on the disturbance of metabolism produced by injury to the limbs. Q J Med  1932; 1: 233–46. [Google Scholar]
  • 73. Frayn  KN. Hormonal control of metabolism in trauma and sepsis, Clin Endocrinol  1986; 24: 577–99. [DOI] [PubMed] [Google Scholar]
  • 74. Voerman  HJ, Groeneveld  ABJ, de Boer  H  et al.  Time course and variability of the endocrine and metabolic response to severe sepsis. Surgery  1993; 114: 951–9. [PubMed] [Google Scholar]
  • 75. Stoner  HB, Little  RA, Frayn  KN, Elebute  AE, Tresadern  J, Gross  E. The effect of sepsis on the oxidation of carbohydrate and fat. Br J Surg  1983; 70: 32–5. [DOI] [PubMed] [Google Scholar]
  • 76. Nanni  G, Siegel  JH, Coleman  B, Fader  P, Castiglione  R. Increased lipid fuel dependence in the critically ill septic patient. J Trauma  1984; 24: 14–30. [DOI] [PubMed] [Google Scholar]
  • 77. Askanazi  J, Carpentier  YA, Elwyn  DH  et al.  Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg  1980; 191: 40–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78. White  RH, Frayn  KN, Little  RA, Threlfall  CJ, Stoner  HB, Irving  MH. Hormonal and metabolic responses to glucose infusion in sepsis studied by the hyperglycemic glucose clamp technique. JPEN J Parenter Enteral Nutr  1987; 11: 345–53. [DOI] [PubMed] [Google Scholar]
  • 79. Levinson  MR, Groeger  JS, Jeevanandam  M, Brennan  MF. Free fatty acid turnover and lipolysis in septic mechanically ventilated cancer-bearing humans. Metabolism  1988; 37: 618–25. [DOI] [PubMed] [Google Scholar]
  • 80. Pitkanen  O, Takala  J, Poyhonen  M, Kari  A. Nitrogen and energy balance in septic and injured intensive care patients: response to parenteral nutrition. Gin Nutr  1991; 10: 258–65. [DOI] [PubMed] [Google Scholar]
  • 81. Frayn  KN, Coppack  SW, Humphreys  SM, Whyte  PL. Metabolic characteristics of human adipose tissue in vivo. Clin Sci  1989; 76: 509–16. [DOI] [PubMed] [Google Scholar]
  • 82. Bonadonna  RC, Groop  LC, Zych  K, Shank  M, DeFronzo  RA. Dose-dependent effect of insulin on plasma free fatty acid turnover and oxidation in humans. Am J Physiol  1990; 259: E736–50. [DOI] [PubMed] [Google Scholar]
  • 83. Groop  LC, Bonadonna  RC, Shank  M, Petrides  AS, DeFronzo  RA. Role of free fatty acids and insulin in determining free fatty acid and lipid oxidation in man. J Clin Invest  1991; 87: 83–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84. Nordenstrom  J, Carpentier  YA, Askanazi  J  et al.  Free fatty acid mobilization and oxidation during total parenteral nutrition in trauma and infection. Ann Surg  1983; 198: 725–35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85. Wolfe  RR, Herndon  DN, Jahoor  F, Miyoshi  H, Wolfe  M. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med  1987; 317: 403–8. [DOI] [PubMed] [Google Scholar]
  • 86. Bessey  PQ, Walters  JM, Aoki  TT, Wilmore  DW. Combined hormonal infusion simulates the metabolic response to injury. Ann Surg  1984; 200: 264–81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87. Gelfand  RA, Matthews  DE, Bier  DM, Sherwin  RS. Role of counterregulatory hormones in the catabolic response to stress. J Clin Invest  1984; 74: 2238–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88. Bodel  P, Atkins  E. Release of endogenous pyrogen by human monocytes. N Engl J Med  1967; 276: 1002–8. [DOI] [PubMed] [Google Scholar]
  • 89. Lefevre  G, Dhiainaut  FJ, Tallet  F  et al.  Individual free fatty acid and lactate uptake in the human heart during severe sepsis. Ann Clin Biochem  1988; 25: 546–51. [DOI] [PubMed] [Google Scholar]
  • 90. Kuzin  MI, Shimkevich  LL, Istratov  VG, Amiraslanov  IUA. Diagnostic role of determination of plasma free fatty acid spectrum in patients with suppurative surgical infection. Vestn Khir  1984; 132: 3–8. [PubMed] [Google Scholar]
  • 91. Kaufmann  RL, Matson  CF, Beisel  WR. Hypertriglyceridemia produced by endotoxin: role of impaired triglyceride disposal mechanisms. J Infect Dis  1976; 133: 548–55. [DOI] [PubMed] [Google Scholar]
  • 92. Wolfe  RR, Shaw  JH. Glucose and FFA kinetics in sepsis: role of glucagon and sympathetic nervous system activity. Am J Physiol  1985; 248: E236–43. [DOI] [PubMed] [Google Scholar]
  • 93. Billow  J. Lipid mobilisation and utilisation. Med Sport Sci  1988; 27: 140–63. [Google Scholar]
  • 94. Nonogaki  K, Fuller  GM, Fuentes  NL  et al.  Interleukin-6 stimulates hepatic triglyceride secretion in rats. Endocrinology  1995; 136: 2143–9. [DOI] [PubMed] [Google Scholar]
  • 95. Clutter  WE, Bier  DM, Shah  SD, Cryer  PE. Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest  1980; 66: 94–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96. Galster  AD, Clutter  WE, Cryer  PE, Collins  JA, Bier  DM. Epinephrine plasma thresholds for lipolytic effects in man: measurements of fatty acid transport with [1–13C] palmitic acid. J Clin Invest  1981; 67: 1729–38. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 97. Kurpad  A, Khan  K, Calder  AG  et al.  Effect of noradrenaline on glycerol turnover and lipolysis in the whole body and subcutaneous adipose tissue in humans in vivo. Clin Sci  1994; 86: 177–84. [DOI] [PubMed] [Google Scholar]
  • 98. Divertie  GD, Jensen  MD, Miles  JM. Stimulation of lipolysis in humans by physiological hypercortisolemia. Diabetes  1991; 40: 1228–32. [DOI] [PubMed] [Google Scholar]
  • 99. Freyschuss  U, Hjemdahl  P, Juhlin-Dannfelt  A, Linde  B. Cardiovascular and metabolic responses to low dose adrenaline infusion: an invasive study in humans. Clin Sci  1986; 70: 199–206. [DOI] [PubMed] [Google Scholar]
  • 100. Simonsen  L, Billow  J, Madsen  J, Christensen  NJ. Thermogenic response to epinephrine in the forearm and abdominal subcutaneous adipose tissue. Am J Physiol  1992; 263: E850–5. [DOI] [PubMed] [Google Scholar]
  • 101. Benedict  CR, Grahame-Smith  DG. Plasma noradrenaline and adrenaline concentrations and dopamine-beta-hydroxylase activity in patients with shock due to septicaemia, trauma and haemorrhage. Q J Med  1978; 47: 1–20. [PubMed] [Google Scholar]
  • 102. Webber  J, Simpson  E, Parkin  H, Macdonald  IA. Metabolic effects of acute hyperketonaemia in man before and during an hyperinsulinaemic euglycaemic clamp. Clin Sci  1994; 86: 677–87. [DOI] [PubMed] [Google Scholar]
  • 103. Beylot  M, Chassard  D, Chambrier  C  et al.  Metabolic effects of a d-beta-hydroxybutrate infusion in septic patients: inhibition of lipolysis and glucose production but not leucine oxidation. Crit Care Med  1994; 22: 1091–8. [DOI] [PubMed] [Google Scholar]
  • 104. Ebeling  P, Koivisto  VA. Non-esterified fatty acids regulate lipid and glucose oxidation and glycogen synthesis in healthy man. Diabetologia  1994; 37: 202–9. [DOI] [PubMed] [Google Scholar]
  • 105. Romanosky  AJ, Bagby  GJ, Bockman  EL, Spitzer  JJ. Free fatty acid utilization by skeletal muscle after endotoxin administration. Am J Physiol  1980; 239: E391–5. [DOI] [PubMed] [Google Scholar]
  • 106. Kovach  AGB, Rosell  S, Sandor  P, Koltay  E, Kovach  E, Tomka  N. Blood flow, oxygen consumption, and free fatty acid release in subcutaneous adipose tissue during hemorrhagic shock in control and phenoxybenzamine-treated dogs. Circ Res  1970; 26: 733–41. [DOI] [PubMed] [Google Scholar]
  • 107. Spector  AA. Fatty acid binding to plasma albumin. J Lipid Res  1975; 16: 165–79. [PubMed] [Google Scholar]
  • 108. Issekutz  B  Jr, Shaw  WAS, Issekutz  TB. Effect of lactate on FFA and glycerol turnover in resting and exercising dogs. J Appl Physiol  1975; 39: 349–53. [DOI] [PubMed] [Google Scholar]
  • 109. De Pergola  G, Cignarelli  M, Nardelli  G  et al.  Influence of lactate on isoproterenol-induced lipolysis and beta-adrenoceptors distribution in human fat cells. Horm Metab Res  1989; 21: 210–13. [DOI] [PubMed] [Google Scholar]
  • 110. LeQuire  VS, Hutcherson  JD, Hamilton  RL, Gray  ME. The effects of bacterial endotoxin on lipid metabolism. I. The responses of the serum lipids of rabbits to single and repeated injections of Shear's polysaccharide. J Exp Med  1959; 110: 293–309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Hirsch  RL, McKay  DG, Travers  RI, Skraly  RK. Hyperlipidemia, fatty liver, and bromsulfophthalein retention in rabbits injected intravenously with bacterial endotoxin. J Lipid Res  1964; 5: 563–8. [PubMed] [Google Scholar]
  • 112. Griffiths  J, Groves  AC, Leung  FY. Hypertriglyceridemia and hypoglycemia in Gram-negative sepsis in the dog. Surg Gynecol Obstet  1973; 136: 897–903. [PubMed] [Google Scholar]
  • 113. Rouzer  CA, Cerami  A. Hypertriglyceridemia associated with Trypanosoma brucei infection in rabbits: role of defective triglyceride removal. Mol Biochem Parasitol  1980; 2: 31–8. [DOI] [PubMed] [Google Scholar]
  • 114. Feingold  KR, Serio  MK, Adi  S, Moser  AH, Grunfeld  C. Tumour necrosis factor stimulates hepatic lipid synthesis and secretion. Endocrinology  1989; 124: 2336–42. [DOI] [PubMed] [Google Scholar]
  • 115. Feingold  KR, Grunfeld  C, Moser  AH, Lear  SR, Huang  B-J. Tumour necrosis factor-alpha stimulates hepatic lipogenesis in the rat in vivo. J Clin Invest  1987; 80: 184–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116. Starnes  HF  Jr, Warren  RS, Jeevanandam  M  et al.  Tumour necrosis factor and the acute metabolic response to tissue injury in man. J Clin Invest  1988; 82: 1321–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. Kurzrock  R, Rhode  MF, Quesada  JR  et al.  Recombinant gamma interferon induces hypertriglycerdemia and inhibits post-heparin lipase activity in cancer patients. J Exp Med  1986; 164: 1093–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118. Feingold  KR, Staprans  I, Memon  RA  et al.  Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high doses inhibit clearance. J Lipid Res  1992; 33: 1765–76. [PubMed] [Google Scholar]
  • 119. Nonogaki  K, Moser  AH, Feingold  KR, Grunfeld  C. Alpha-adrenergic receptors mediate the hypertriglyceridemia induced by endotoxin, but not tumour necrosis factor, in rats. Endocrinology  1994; 135: 2644–50. [DOI] [PubMed] [Google Scholar]
  • 120. Evans  RD, Argiles  JM, Williamson  DH. Metabolic effects of tumour necrosis factor-alpha (cachectin) and interleukin-1. Clin Sci  1989; 77: 357–64. [DOI] [PubMed] [Google Scholar]
  • 121. Hellerstein  MK, Neese  RA, Schwarz  J-M. Model for measuring absolute rates of hepatic de novo lipogenesis and reesterification of free fatty acids. Am J Physiol  1993; 265: E814–20. [DOI] [PubMed] [Google Scholar]
  • 122. Wolfe  RR, Shaw  JHF, Durkot  MJ. Effect of sepsis on VLDL kinetics: responses in basal state and during glucose infusion. Am J Physiol  1985; 248: E732–40. [DOI] [PubMed] [Google Scholar]
  • 123. Bagby  GJ, Corll  CB, Martinez  RR. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity. Am J Physiol  1987; 253: E59–64. [DOI] [PubMed] [Google Scholar]
  • 124. Beutler  B, Mahoney  J, Le Trang  N, Pekala  P, Cerami  A. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med  1985; 161: 984–95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125. Bagby  GJ, Corll  CB, Thompson  JJ, Wilson  LA. Lipoprotein lipase-suppressing mediator in serum of endotoxin-treated rats. Am J Physiol  1986; 251: E470–6. [DOI] [PubMed] [Google Scholar]
  • 126. Morin  CL, Schlaepfer  IR, Eckel  RH. Tumour necrosis factor-alpha eliminates binding of NF-Y and an octamer-binding protein to the lipoprotein lipase promoter in 3T3-L1 adipocytes. J Clin Invest  1995; 95: 1684–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127. Mackay  AG, Oliver  JD, Rogers  MP. Regulation of lipoprotein lipase activity and mRNA content in rat epididymal adipose tissue in vitro by recombinant tumour necrosis factor. Biochem J  1990; 269: 123–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128. Kern  PA. Recombinant human tumor necrosis factor does not inhibit lipoprotein lipase in primary cultures of isolated human adipocytes. J Lipid Res  1988; 29: 909–14. [PubMed] [Google Scholar]
  • 129. Nordenstrom  J, Carpentier  YA, Askanazi  J  et al.  Metabolic utilization of intravenous fat emulsion during total parenteral nutrition. Ann Surg  1982; 196: 221–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130. Bagby  GJ, Spitzer  JA. Lipoprotein lipase activity in rat heart and adipose tissue during endotoxic shock. Am J Physiol  1980; 238: H325–30. [DOI] [PubMed] [Google Scholar]
  • 131. Lanza-Jacoby  S, Tabares  A. Triglyceride kinetics, tissue lipoprotein lipase, and liver lipogenesis in septic rats. Am J Physiol  1990; 258: E678–85. [DOI] [PubMed] [Google Scholar]
  • 132. Semb  H, Peterson  J, Tavernier  J, Olivecrona  T. Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo. J Biol Chem  1987; 262: 8390–4. [PubMed] [Google Scholar]
  • 133. Fried  SK, Zechner  R. Cachectin/tumour necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis, and activity. J Lipid Res  1989; 30: 1917–23. [PubMed] [Google Scholar]
  • 134. Hotamisligil  GS, Arner  P, Caro  JF, Atkinson  RL, Spiegelman  BM. Increased adipose tissue expression of tumour necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest  1995; 95: 2409–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135. Kern  PA, Saghizadeh  M, Ong  JM, Bosch  RJ, Deem  R, Simsolo  RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest  1995; 95: 2111–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 136. van der Poll  T, Buller  HR, ten Cate  H  et al.  Activation of coagulation after administration of tumour necrosis factor to normal subjects. N Engl J Med  1990; 322: 1622–7. [DOI] [PubMed] [Google Scholar]
  • 137. van Deventer  SJH, Buller  HR, ten Cate  JW, Aarden  LA, Hack  CE, Sturk  A. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood  1990; 76: 2520–6. [PubMed] [Google Scholar]
  • 138. Baldo  A, Sniderman  AD, St-Luce  S  et al.  The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J Clin Invest  1993; 92: 1543–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139. Maslowska  MH, Sniderman  AD, Maclean  LD, Cianflone  C. Regional differences in triacylglycerol synthesis in adipose tissue and in cultured preadipocytes. J Lipid Res  1993; 34: 219–28. [PubMed] [Google Scholar]
  • 140. Cahill  GF  Jr, Herrera  MG, Morgan  AP  et al.  Hormone-fuel interrelationships during fasting. J Clin Invest  1966; 45: 1751–69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 141. Neufeld  HA, Pace  JA, White  FE. The effect of bacterial infections on ketone concentrations in rat liver and blood and on free fatty acid concentrations in rat blood. Metabolism  1976; 25: 877–84. [DOI] [PubMed] [Google Scholar]
  • 142. Kaminski  MV  Jr, Neufeld  HA, Pace  JG. Effect of inflammatory and noninflammatory stress on plasma ketone bodies and free fatty acids and on glucagon and insulin in peripheral and portal blood. Inflammation  1979; 3: 289–94. [DOI] [PubMed] [Google Scholar]
  • 143. Marchuk  JB, Finley  RJ, Groves  AC, Wolfe  LI, Holliday  RL, Duff  JH. Catabolic hormones and substrate patterns in septic patients. J Surg Res  1977; 23: 177–82. [DOI] [PubMed] [Google Scholar]
  • 144. Memon  RA, Feingold  KR, Moser  RH  et al.  Differential effects of interleukin-1 and tumour necrosis factor on ketogenesis. Am J Physiol  1992; 263: E301–9. [DOI] [PubMed] [Google Scholar]
  • 145. Cabana  VG, Siegel  JN, Sabesin  SM. Effects of the acute phase response on the concentration and density distribution of plasma lipids and apolipoproteins. J Lipid Res  1989; 30: 39–49. [PubMed] [Google Scholar]
  • 146. Ulevitch  RJ, Johnston  AR, Weinstein  DB. New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest  1979; 64: 1516–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 147. Munford  RS, Dietschy  JM. Effect of specific antibodies, hormones and lipoproteins on bacterial lipopolysaccharides injected into the rat. J Infect Dis  1985; 152: 177–84. [DOI] [PubMed] [Google Scholar]
  • 148. Levine  DM, Parker  TS, Donnelly  TM, Walsh  A, Rubin  AL. In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci USA  1993; 90: 12 040–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149. Van Lenten  BJ, Fogelman  AM, Haberland  ME, Edwards  PA. The role of lipoproteins and receptor-mediated endocytosis in the transport of bacterial lipopolysaccharides. Proc Natl Acad Sci USA  1986; 83: 2704–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150. Harris  HW, Grunfeld  C, Feingold  KR, Rapp  JH. Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice. J Clin Invest  1990; 86: 696–702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151. van der Poll  T, Braxton  CC, Coyle  SM  et al.  Effect of hypertriglyceridemia on endotoxin responsiveness in humans. Infect Immun  1995; 63: 3396–400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152. Schuberth  O, Wretlind  A. Intravenous infusion of fat emulsions, phosphatides and emulsifying agents. Clinical and experimental studies. Acta Chirurgica Scandinavica. Supplementum  1961; 278: 1–21. [Google Scholar]
  • 153. Wretlind  A. Complete intravenous nutrition. Theoretical and experimental background. Nutrition and Metabolism  1972; 14 (Suppl): 1–57. [PubMed] [Google Scholar]
  • 154. Shaw  JH, Holdaway  CM. Protein-sparing effect of substrate infusion in surgical patients is governed by the clinical state, and not by the individual substrates infused. JPEN J Parenter Enteral Nutr  1988; 12: 433–40. [DOI] [PubMed] [Google Scholar]
  • 155. Beaufrere  B, Chassard  D, Broussolle  C, Riou  JP, Beylot  M. Effects of d-beta-hydroxybutyrate and long- and medium-chain triglycerides on leucine metabolism in humans. Am J Physiol  1992; 262: E268–74. [DOI] [PubMed] [Google Scholar]
  • 156. Walker  M, Shmueli  E, Daley  SE, Cooper  BG, Alberti  KG. Do nonesterified fatty acids regulate skeletal muscle protein turnover in humans?  Am J Physiol  1993; 265: E357–61. [DOI] [PubMed] [Google Scholar]
  • 157. Askanazi  J, Nordenstrom  J, Rosenbaum  SH  et al.  Nutrition for the patient with respiratory failure: glucose vs. fat. Anesthesiology  1981; 54: 373–7. [DOI] [PubMed] [Google Scholar]
  • 158. Dahlan  W, Richelle  M, Kulapongse  S, Rossle  C, Deckelbaum  RJ, Carpentier  YA. Modification of erythrocyte membrane lipid composition by a single intravenous infusion of phospholipid-triacylglycerol emulsions in man. Clin Nutr  1992; 11: 255–61. [DOI] [PubMed] [Google Scholar]
  • 159. Simeons  Ch, Richelle  M, Rossle  C, Derluyn  M, Deckelbaum  RJ, Carpentier  YA. Manipulation of tissue fatty acid profile by intravenous lipid in dogs. Clin Nutr  1995; 14: 177–85. [DOI] [PubMed] [Google Scholar]
  • 160. Fischer  GW, Hunter  KW, Wilson  SR, Mease  AD. Diminished bacterial defences with intralipid. Lancet  1980; ii: 819–20. [DOI] [PubMed] [Google Scholar]
  • 161. Seidner  DL, Masciolo  EA, Istfan  NW  et al.  Effects of long-chain triglyceride emulsions on reticuloendothelial system function in humans. JPEN J Parenter Enteral Nutr  1989; 13: 614–19. [DOI] [PubMed] [Google Scholar]
  • 162. Jensen  GL, Mascioli  EA, Seidner  DL  et al.  Parenteral infusion of long- and medium-chain triglycerides and reticuloendothelial system function in man. JPEN J Parenter Enteral Nutr  1990; 14: 467–71. [DOI] [PubMed] [Google Scholar]
  • 163. Skeie  B, Askanazi  J, Rothkopf  MM, Rosenbaum  SH, Kvetan  V, Thomashow  B. Intravenous fat emulsions and lung function: a review. Crit Care Med  1988; 16: 183–94. [DOI] [PubMed] [Google Scholar]
  • 164. Venus  B, Prager  R, Patel  CB, Sandoval  E, Sloan  P, Smith  RA. Cardiopulmonary effects of intralipid infusion in critically ill patients. Crit Care Med  1988; 16: 587–90. [DOI] [PubMed] [Google Scholar]
  • 165. Dahl  PE, Østerud  B, Kjaeve  JC. Haematological disorders and lung alveolar macrophage function following total parenteral nutrition in rats. Clin Nutr  1992; 11: 269–76. [DOI] [PubMed] [Google Scholar]
  • 166. Hexeberg  S, Hessevik  I, Hexeberg  E. Intravenous lipid infusion results in myocardial lipid droplet accumulation combined with reduced myocardial performance in heparinized rabbits. Acta Physiol Scand  1995; 153: 159–68. [DOI] [PubMed] [Google Scholar]
  • 167. Oliver  MF, Opie  LH. Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. Lancet  1994; 343: 155–8. [DOI] [PubMed] [Google Scholar]
  • 168. Caruna  JA  Jr, Monies  M, Camera  DS, Ummer  A, Potmesil  SH, Gage  AA. Functional and histopathologic changes in the liver during sepsis. Surg Gynecol Obstet  1982; 154: 653–6. [PubMed] [Google Scholar]
  • 169. Chen  WJ. Utilization of intralipid in septic rats: effects of sepsis on the clearance of exogenous fat emulsion from various organs. JPEN J Parenter Enteral Nutr  1986; 10: 482–6. [DOI] [PubMed] [Google Scholar]
  • 170. Rossner  S, Johansson  C, Walldius  G, Aly  A. Intralipid clearance and lipoprotein pattern in men with advanced alcoholic liver cirrhosis. Am J Clin Nutr  1979; 32: 2022–6. [DOI] [PubMed] [Google Scholar]
  • 171. Muscaritoli  M, Cangiano  C, Cascino  A  et al.  Exogenous lipid clearance in compensated liver cirrhosis. JPEN J Parenter Enteral Nutr  1986; 10: 599–603. [DOI] [PubMed] [Google Scholar]
  • 172. Delafosse  B, Viale  JP, Tissot  S  et al.  Effects of glucose-to-lipid ratio and type of lipid on substrate oxidation rate in patients. Am J Physiol  1994; 267: E775–80. [DOI] [PubMed] [Google Scholar]
  • 173. Shaw  JH, Wildbore  M, Wolfe  RR. Whole body protein kinetics in severely septic patients. The response to glucose and total parenteral nutrition. Ann Surg  1987; 205: 288–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174. Alexander  JW, Gonce  SJ, Miskell  PW, Peck  MD, Sax  H. A new model for studying nutrition in peritonitis. The adverse effect of overfeeding. Ann Surg  1989; 209: 334–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175. Quinn  T, Askanazi  J. Nutrition and cardiac disease. Crit Care Clin  1987; 3: 167–84. [PubMed] [Google Scholar]
  • 176. Shaw-Delanty  SN, Elwyn  DH, Askanazi  J, Iles  M, Schwarz  Y, Kinney  JM. Resting energy expenditure in injured, septic, and malnourished adult patients on intravenous diets. Clin Nutr  1990; 9: 305–12. [DOI] [PubMed] [Google Scholar]
  • 177. Hyltander  A, Arfvidsson  B, Korner  U, Sandstrom  R, Lundholm  K. Metabolic rate and nitrogen balance in patients receiving bolus intermittent total parenteral nutrition infusion. JPEN J Parenter Enteral Nutr  1993; 17: 158–64. [DOI] [PubMed] [Google Scholar]
  • 178. Blackburn  GL, Bistrian  BR. Nutritional care of the injured and/or septic patient. Surg Clin North Am  1976; 56: 1195–224. [DOI] [PubMed] [Google Scholar]
  • 179. Moore  FA, Feliciano  DV, Andrassy  RJ  et al.  Early enteral feeding, compared with parenteral, reduces postoperative septic complications. The results of a meta-analysis. Ann Surg  1992; 216: 172–83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180. Kudsk  KA, Croce  MA, Fabian  TC  et al.  Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg  1992; 215: 503–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181. Minard  G, Kudsk  KA. Effect of route of feeding on the incidence of septic complications in critically ill patients. Semin Respir Infect  1994; 9: 228–31. [PubMed] [Google Scholar]
  • 182. Loannides-Demos  LL, Liolios  L, Topliss  DJ, McLean  AJ. A prospective audit of total parenteral nutrition at a major teaching hospital. Med J Aust  1995; 163: 233, 235–7. [DOI] [PubMed] [Google Scholar]
  • 183. Border  JR, Hassett  J, LaDuca  J  et al.  The gut origin septic states in blunt multiple trauma (ISS = 40) in the ICU. Ann Surg  1987; 206: 427–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184. Deitch  EA. Bacterial translocation: the influence of dietary variables. Gut  1994; 35 (Suppl 1): S23–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185. Kudsk  KA, Minard  G, Wojrysiak  SL, Croce  M, Fabian  T, Brown  RO. Visceral protein response to enteral versus parenteral nutrition and sepsis in patients with trauma. Surgery  1994; 116: 516–23. [PubMed] [Google Scholar]
  • 186. Barber  AE, Jones  WG  III, Minei  JP, Fahey  TJ  III, Lowry  SF, Shires  GT. Bacterial overgrowth and intestinal atrophy in the etiology of gut barrier failure in the rat. Am J Surg  1991; 161: 300–4. [DOI] [PubMed] [Google Scholar]
  • 187. Sodeyama  M, Gardiner  KR, Regan  MC, Kirk  SJ, Efron  G, Barbul  A. Sepsis impairs gut amino acid absorption. Am J Surg  1993; 165: 150–4. [DOI] [PubMed] [Google Scholar]
  • 188. Singh  G, Harkema  JM, Mayberry  AJ, Chaudry  IH. Severe depression of gut absorptive capacity in patients following trauma or sepsis. J Trauma  1994; 36: 803–8. [DOI] [PubMed] [Google Scholar]
  • 189. Gardiner  K, Barbul  A. Intestinal amino acid absorption during sepsis. JPEN J Parenter Enteral Nutr  1993; 17: 277–83. [DOI] [PubMed] [Google Scholar]
  • 190. Gosche  JR, Garrison  RN, Harris  PD, Cryer  HG. Absorptive hyperemia restores intestinal blood flow during Escherichia coli sepsis in the rat. Arch Surg  1990; 125: 1573–6. [DOI] [PubMed] [Google Scholar]
  • 191. Cerra  FB, McPherson  JP, Konstantinides  FN, Konstantinides  NN, Teasley  KM. Enteral nutrition does not prevent multiple organ failure syndrome (MOFS) after sepsis. Surgery  1988; 104: 727–33. [PubMed] [Google Scholar]
  • 192. Beau  P, Chammartin  F, Matuchansky  C. Biological hepatic abnormalities, cholestatic jaundice and hospital artificial nutrition. A comparative study in adults with cyclic total parenteral nutrition and enteral nutrition. Gastroenterol Clin Biol  1988; 12: 326–31. [PubMed] [Google Scholar]
  • 193. Moran-Penco  JM, Macia-Bottejara  E, Salas-Martinez  J  et al.  Liver lipid composition and intravenous, intraperitoneal, and enteral administration of intralipid. Nutrition  1994; 10: 26–31. [PubMed] [Google Scholar]
  • 194. Spector  MH, Levine  GM, Deren  JJ. Direct and indirect effects of dextrose and amino acids on gut mass. Gastroenterology  1977; 72: 706–10. [PubMed] [Google Scholar]
  • 195. Fong  YM, Marno  MA, Barber  A  et al.  Total parenteral nutrition and bowel rest modify the metabolic response to endotoxin in humans. Ann Surg  1989; 210: 449–57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196. Couse  N, Pickford  LR, Mitchell  CJ, Macfie  J. Total parenteral nutrition by peripheral vein—substitute or supplement to the central venous route? A prospective trial. Clin Nutr  1993; 12: 213–16. [DOI] [PubMed] [Google Scholar]
  • 197. von-Meyenfeldt  MM, Stapert  J, de-Jong  PC, Soeters  PB, Wesdorp  RI, Greep  JM. TPN catheter sepsis: lack of effect of subcutaneous tunnelling of PVC catheters on sepsis rate. JPEN JParenter Enteral Nutr  1980; 4: 514–17. [DOI] [PubMed] [Google Scholar]
  • 198. Mughal  MM. Complications of intravenous feeding catheters. Br J Surg  1989; 76: 15–21. [DOI] [PubMed] [Google Scholar]
  • 199. Iriyama  K, Nishiwaki  H, Terashima  H  et al.  Apolipoprotein C-11 modifications associated with an infusion of artificial lipid particles. JPEN J Parenter Enteral Nutr  1988; 12: 60–2. [DOI] [PubMed] [Google Scholar]
  • 200. Tonouchi  H, Iriyama  K, Carpentier  YA. Transfer of apolipoproteins between plasma lipoproteins and exogenous lipid particles after repeated bolus injections or during a continuous infusion of fat emulsion. JPEN J Parenter Enteral Nutr  1990; 14: 381–5. [DOI] [PubMed] [Google Scholar]
  • 201. Bach  AC, Storck  D, Meraihi  Z. Medium-chain triglyceride-based fat emulsions: an alternative energy supply in stress and sepsis. JPEN J Parenter Enteral Nutr  1988; 12 (Suppl 6): 82S–88S. [DOI] [PubMed] [Google Scholar]
  • 202. Mascioli  EA, Lopes  S, Randall  S  et al.  Serum fatty acid profiles after intravenous medium chain triglyceride administration. Lipids  1989; 24: 793–8. [DOI] [PubMed] [Google Scholar]
  • 203. Ball  MJ, White  K. Metabolic effects of intravenous medium-and long-chain triacylglycerols in critically ill patients. Gin Sci  1989; 76: 165–70. [DOI] [PubMed] [Google Scholar]
  • 204. Ball  MJ. Hematological and biochemical effects of parenteral nutrition and medium-chain triglycerides: comparison with long-chain triglycerides. Am J Clin Nutr  1991; 53: 916–22. [DOI] [PubMed] [Google Scholar]
  • 205. Bach  AC, Babayon  VK. Medium-chain triglycerides: an update. Am J Clin Nutr  1982; 36: 950–62. [DOI] [PubMed] [Google Scholar]
  • 206. Cotter  R, Taylor  CA, Johnson  R, Rowe  WB. A metabolic comparison of a pure long-chain triglyceride lipid emulsion (LCT) and various medium-chain triglycerides (MCT)-LCT combination emulsions in dogs. Am J Clin Nutr  1987; 45: 927–39. [DOI] [PubMed] [Google Scholar]
  • 207. Weissman  C, Chiolero  R, Askanazi  J, Gil  KM, Elwyn  D, Kinney  JM. Intravenous infusion of a medium-chain triglyceride-enriched lipid emulsion. Crit Care Med  1988; 16: 1183–90. [DOI] [PubMed] [Google Scholar]
  • 208. Sherwin  RS, Hendler  RG, Felig  P. Effect of ketone infusions on amino acid and nitrogen metabolism in man. J Clin Invest  1975; 55: 1382–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209. Crowe  PJ, Royle  GT, Wagner  D, Burke  JF. Does hyperketonemia affect protein or glucose kinetics in postabsorptive or traumatized man?  J Surg Res  1989; 47: 313–18. [DOI] [PubMed] [Google Scholar]
  • 210. Jiang  ZM, Zhang  SY, Wang  XR, Yang  NF, Zhu  Y, Wilmore  D. A comparison of medium-chain and long-chain triglycerides in surgical patients. Ann Surg  1993; 217: 175–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211. Stein  TP, Fried  RC, Torosian  MH  et al.  Comparison of glucose, LCT, and LCT plus MCT as calorie sources for parenterally nourished septic rats. Am J Physiol  1986; 250: E312–18. [DOI] [PubMed] [Google Scholar]
  • 212. Hamawy  KJ, Moldawer  LL, Georgieff  M  et al.  The effect of lipid emulsions on reticuloendothelial system function in the injured animal. JPEN J Parenter Enteral Nutr  1985; 9: 559–65. [DOI] [PubMed] [Google Scholar]
  • 213. Sedman  PC, Somers  SS, Ramsden  CW, Brennan  TG, Guillou  PJ. Effects of different lipid emulsions on lymphocyte function during total parenteral nutrition. Br J Surg  1991; 78: 1396–9. [DOI] [PubMed] [Google Scholar]
  • 214. Baldermann  H, Wicklmayr  M, Rett  K, Banholzer  P, Dietze  G, Mehnert  H. Changes of hepatic morphology during parenteral nutrition with lipid emulsions containing LCT or MCT/LCT quantified by ultrasound. JPEN J Parenter Enteral Nutr  1991; 15: 601–3. [DOI] [PubMed] [Google Scholar]
  • 215. Jenkins  AP, Thompson  RP. Does the fatty acid profile of dietary fat influence its trophic effect on the small intestine mucosa?  Gut  1993; 34: 358–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216. Ladas  SD, Isaacs  PE, Murphy  GM, Sladen  GE. Comparison of the effects of medium and long chain triglyceride containing lipid meals on gall bladder and small intestinal function in normal man. Gut  1984; 25: 405–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217. Sandström  R, Hyltander  A, Körner  U, Lundholm  K. Structured triglycerides to postoperative patients: a safety and tolerance study. JPEN J Parenter Enteral Nutr  1993; 17: 153–7. [DOI] [PubMed] [Google Scholar]
  • 218. Siderova  VS, Carpentier  YA, Dahlan  W, Richelle  M. Intravascular metabolism of different fatty acids during lipid infusion in man. Clin Nutr  1993; 12: 329–36. [DOI] [PubMed] [Google Scholar]
  • 219. Calder  PC, Sherrington  EJ, Askanazi  J, Newsholme  EA. Inhibition of lymphocyte proliferation in vitro by two lipid emulsions with different fatty acid compositions. Clin Nutr  1994; 13: 69–74. [DOI] [PubMed] [Google Scholar]
  • 220. Peck  MD. Omega-3 polyunsaturated fatty acids: benefit or harm during sepsis. New Horizons  1994; 2: 230–6. [PubMed] [Google Scholar]
  • 221. Cooper  AL, Gibbons  L, Horan  MA, Little  RA, Rothwell  NJ. Effect of dietary fish oil supplementation on fever and cytokine production in human volunteers. Clin Nutr  1993; 12: 321–8. [DOI] [PubMed] [Google Scholar]
  • 222. Endres  S, Ghorbani  R, Kelley  VE  et al.  The effect of dietary supplementation with n3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med  1989; 320: 265–71. [DOI] [PubMed] [Google Scholar]
  • 223. Lee  TH, Hoover  RL, Williams  JD  et al.  Effect of dietary enrichment with eicosapentaenoic and docosahexanoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med  1985; 312: 1217–24. [DOI] [PubMed] [Google Scholar]
  • 224. Johnson  JA  III, Griswold  JA, Muakkassa  FF. Essential fatty acids influence survival in sepsis. J Trauma  1993; 35: 128–31. [DOI] [PubMed] [Google Scholar]
  • 225. Bower  RH, Cerra  FB, Bershadsky  B  et al.  Early enteral administration of a formula (impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit Care Med  1995; 23: 436–49. [DOI] [PubMed] [Google Scholar]
  • 226. Grimm  H, Tibell  A, Norrlind  B, Blecher  C, Wilker  S, Schwemmle  K. Immunoregulation by parenteral lipids: impact of n-3 to n-6 fatty acid ratio. JPEN J Parenter Enteral Nutr  1994; 18: 417–21. [DOI] [PubMed] [Google Scholar]
  • 227. Nordenstrom  J. Metabolic complications of parenteral nutrition. In: Payne-James  J, Grimble  G, Silk  D, eds. Artificial Nutrition Support in Clinical Practice  London: Edward Arnold, 1995: 333–42. [Google Scholar]
  • 228. Carpentier  YA, Thonnart  N. Parameters for evaluation of lipid metabolism. JPEN J Parenter Enteral Nutr  1987; 11 (Suppl 5): 104S–108S. [DOI] [PubMed] [Google Scholar]
  • 229. Nordenstrom  J, Thorne  A, Lindholm  M. Accuracy of plasma turbidity measurement for determining fat intolerance during total parenteral nutrition. Clin Nutr  1990; 9: 172–5. [DOI] [PubMed] [Google Scholar]
  • 230. Rigaud  D, Serog  P, Legrand  A, Cerf  M, Apfelbaum  M, Bonfils  S. Quantification of lipoprotein X and its relationship to plasma lipid profile during different types of parenteral nutrition. JPEN J Parenter Enteral Nutr  1984; 8: 529–34. [DOI] [PubMed] [Google Scholar]
  • 231. Hajri  T, Ferezou  J, Lutton  C. Effects of intravenous infusions of commercial fat emulsions (Intralipid 10 or 20%) on rat plasma lipoproteins: phospholipids in excess are the main precursors of lipoprotein-X-like particles. Biochem Biophys Acta  1990; 1047: 121–30. [DOI] [PubMed] [Google Scholar]
  • 232. Untracht  SH. Intravascular metabolism of an artificial transporter of triacylglycerols. Alterations of serum lipoproteins resulting from total parenteral nutrition with Intralipid. Biochem Biophys Acta  1982; 711: 176–92. [DOI] [PubMed] [Google Scholar]
  • 233. Messing  B, Peynet  J, Poupon  J  et al.  Effect of fat-emulsion phospholipids on serum lipoprotein profile during 1 mo of cyclic total parenteral nutrition. Am J Clin Nutr  1990; 52: 1094–100. [DOI] [PubMed] [Google Scholar]
  • 234. Grafmeyer  D, Bondon  M, Manchon  M, Levillain  P. The influence of bilirubin, haemolysis and turbidity on 20 analytical tests performed on automatic analysers. Results of an interlaboratory study. Ear J Clin Chem Clin Biochem  1995; 33: 31–52. [DOI] [PubMed] [Google Scholar]

Articles from The British Journal of Surgery are provided here courtesy of Oxford University Press

RESOURCES