Abstract
Sepsis is a common surgical problem which can induce profound changes in the plasma concentrations of cytokines and hormones, leading to a catabolic state. Hypertriglyceridaemia and increased fat oxidation are the main features of altered fat metabolism encountered in this state. The endogenous catabolism of sepsis can be reduced by administering exogenous lipid emulsions as a source of metabolic fuel, although the changes in lipid metabolism associated with sepsis may affect the handling of these exogenous lipids. An exciting area for future research is an examination of the ability of lipid emulsions to reduce the morbidity and mortality associated with sepsis by altering immune responses, in addition to limiting catabolism.
Contributor Information
J S Samra, Oxford Lipid Metabolism Group, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford OX2 6HE, UK.
L K M Summers, Oxford Lipid Metabolism Group, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford OX2 6HE, UK.
Dr K N Frayn, Oxford Lipid Metabolism Group, Nuffield Department of Clinical Medicine, Radcliffe Infirmary, Oxford OX2 6HE, UK.
References
- 1. Le Gall JR, Lemeshow S, Leleu G et al. Customized probability models for early severe sepsis in adult intensive care patients. Intensive Care Unit Scoring Group. JAMA 1995; 273: 644–50. [PubMed] [Google Scholar]
- 2. Parrillo JE, Parker MM, Natanson C et al. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Ann Intern Med 1990; 113: 227–42. [DOI] [PubMed] [Google Scholar]
- 3. Ziegler TR, Young LS, Manson JM, Wilmore DW. Metabolic effects of recombinant human growth hormone in patients receiving parenteral nutrition. Ann Surg 1988; 208: 6–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Banerjee S, Bhaduri JN. Serum protein-bound carbohydrates and lipids in cholera. Proc Soc Exp Biol Med 1959; 101: 340–1. [DOI] [PubMed] [Google Scholar]
- 5. Gallin JI, Kaye D, O'Leary WM. Serum lipids in infection. N Engl J Med 1969; 281: 1081–6. [DOI] [PubMed] [Google Scholar]
- 6. Alvarez C, Ramos A. Lipids, lipoproteins, and apoproteins in serum during infection. Clin Chem 1986; 32: 142–5. [PubMed] [Google Scholar]
- 7. Carpentier YA, Askanazi J, Elwyn DH et al. Effects of hypercaloric glucose infusion on lipid metabolism in injury and sepsis. J Trauma 1979; 19: 649–54. [DOI] [PubMed] [Google Scholar]
- 8. Shaw JHF, Wolfe RR. Fatty acid and glycerol kinetics in septic patients and in patients with gastrointestinal cancer. The response to glucose infusion and parenteral feeding. Ann Surg 1987; 205: 368–76. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Knaus WA, Harrell FE, Fisher CJ Jr et al. The clinical evaluation of new drugs for sepsis. A prospective study design based on survival analysis. JAMA 1993; 270: 1233–41. [PubMed] [Google Scholar]
- 10. Ambrose NS, Johnson M, Burdon DW, Keighley MRB. Incidence of pathogenic bacteria from mesenteric lymph nodes and ileal serosa during Crohn's disease surgery. Br J Surg 1984; 71: 623–5. [DOI] [PubMed] [Google Scholar]
- 11. Walker WA. Role of the mucosal barrier in toxin/microbial attachment to the gastrointestinal tract. Ciba Found Symp (112) 1985; 34–47. [DOI] [PubMed]
- 12. Eade MN, Brooke BN. Portal bacteraemia in cases of ulcerative colitis submitted to colectomy. Lancet 1969; i: 1008–9. [DOI] [PubMed] [Google Scholar]
- 13. Wellmann W, Fink PC, Benner F, Schmidt FW. Endotoxaemia in active Crohn's disease. Treatment with whole gut irrigation and 5-aminosalicylic acid. Gut 1986; 27: 814–20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Gardiner KR, Erwin PJ, Anderson NH, Barr JG, Halliday MI, Rowlands BJ. Colonic bacteria and bacterial translocation in experimental colitis. Br J Surg 1993; 80: 512–16. [DOI] [PubMed] [Google Scholar]
- 15. Baker JW, Deitch EA, Li M, Berg RD, Specian RD. Hemorrhagic shock induces bacterial translocation from the gut. J Trauma 1988; 28: 896–906. [DOI] [PubMed] [Google Scholar]
- 16. Koziol JM, Rush BF Jr, Smith SM, Machiedo GW. Occurrence of bacteremia during and after hemorrhagic shock. J Trauma 1988; 28: 10–16. [PubMed] [Google Scholar]
- 17. Jiang J, Bahrami S, Leichtfried G, Redl H, Ohlinger W, Schlag G. Kinetics of endotoxin and tumour necrosis factor appearance in portal and systemic circulation after hemorrhagic shock in rats. Ann Surg 1995; 221: 100–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Pape H-C, Dwenger A, Regel G et al. Increased gut permeability after multiple trauma. Br J Surg 1994; 81: 850–2. [DOI] [PubMed] [Google Scholar]
- 19. Haglund U, Bulkley GB, Granger DN. On the pathophysiology of intestinal ischemic injury. Acta Chirurgica Scandinavica 1987; 153: 321–4. [PubMed] [Google Scholar]
- 20. Deitch EA. Multiple organ failure. Pathophysiology and potential future therapy. Ann Surg 1992; 216: 117–34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Tunn UW, Thieme H. Sepsis associated with urinary tract infection. Antibiotic treatment with piperacillin. Arch Intern Med 1982; 142: 2035–8. [PubMed] [Google Scholar]
- 22. Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract. The ‘undrained abscess’ of multiple organ failure. Ann Surg 1993; 218: 111–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Danner RL, Elin RJ, Hosseini JM, Wesley RA, Reilly JM, Parrillo JE. Endotoxemia in human septic shock. Chest 1991; 99: 169–75. [DOI] [PubMed] [Google Scholar]
- 24. Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin levels correlate with survival in patients with sepsis syndrome. Ann Intern Med 1993; 119: 771–8. [DOI] [PubMed] [Google Scholar]
- 25. Goldie AS, Fearon KCH, Ross JA et al. Natural cytokine antagonists and endogenous antiendotoxin core antibodies in sepsis syndrome. The Sepsis Intervention Group. JAMA 1995; 274: 172–7. [PubMed] [Google Scholar]
- 26. Kreger BE, Craven DE, McCabe WR. Gram-negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 1980; 68: 344–55. [DOI] [PubMed] [Google Scholar]
- 27. Hesse DG, Tracey KJ, Fong Y et al. Cytokine appearance in human endotoxemia and primate bacteremia. Surg Gynecol Obstet 1988; 166: 147–53. [PubMed] [Google Scholar]
- 28. Michie HR, Manogue KR, Spriggs DR et al. Detection of circulating tumour necrosis factor after endotoxin administration. N Engl J Med 1988; 318: 1481–6. [DOI] [PubMed] [Google Scholar]
- 29. Koopmans R, Hoek FJ, van Deventer SJH, van der Poll T. Model for whole body production of tumour necrosis factor-alpha in experimental endotoxaemia in healthy subjects. Clin Sci 1994; 87: 459–65. [DOI] [PubMed] [Google Scholar]
- 30. Chrousos GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995; 332: 1351–62. [DOI] [PubMed] [Google Scholar]
- 31. Michie HR, Guillou PJ, Wilmore DW. Tumour necrosis factor and bacterial sepsis. Br J Surg 1989; 76: 670–1. [DOI] [PubMed] [Google Scholar]
- 32. Dinarello CA, Wolff SM. The role of interleukin-1 in disease. N Engl J Med 1993; 328: 106–13. [DOI] [PubMed] [Google Scholar]
- 33. van der Poll T, Sauerwein HP. Tumour necrosis factor-α: its role in the metabolic response to sepsis. Clin Sci 1993; 84: 247–56 (Editorial). [DOI] [PubMed] [Google Scholar]
- 34. Moldawer LL. Biology of proinflammatory cytokines and their antagonists. Crit Care Med 1994; 22: S3–7. [PubMed] [Google Scholar]
- 35. Calandra T, Baumgartner JD, Grau GE et al. Prognostic values of tumour necrosis factor/cachectin, interleukin-1, interferon-alpha, and interferon-gamma in the serum of patients with septic shock. Swiss-Dutch JS Immunoglobin Study Group. J Infect Dis 1990; 161: 982–7. [DOI] [PubMed] [Google Scholar]
- 36. Takakuwa T, Endo S, Nakae H et al. Plasma levels of TNF-alpha, endothelin-1 and thrombomodulin in patients with sepsis. Res Common Chem Pathol Pharmacol 1994; 84: 261–9. [PubMed] [Google Scholar]
- 37. Pinsky MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E. Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 1993; 103: 565–75. [DOI] [PubMed] [Google Scholar]
- 38. Keogh C, Fong Y, Marano MA et al. Identification of a novel tumour necrosis factor alpha/cachectin from the livers of burned and infected rats. Arch Surg 1990; 125; 79–84. [DOI] [PubMed] [Google Scholar]
- 39. Dofferhoff ASM, Bom VJJ, de Vries-Hospers HG et al. Patterns of cytokines, plasma endotoxin, plasminogen activator inhibitor, and acute-phase proteins during the treatment of severe sepsis in humans. Crit Care Med 1992; 20: 185–92. [DOI] [PubMed] [Google Scholar]
- 40. Ihle JN. Signalling by the cytokine receptor superfamily. Trends in Endocrinology and Metabolism 1994; 5: 137–43. [DOI] [PubMed] [Google Scholar]
- 41. Seckinger P, Isaaz S, Dayer JM. A human inhibitor of tumour necrosis factor alpha. J Exp Med 1988; 167: 1511–16. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42. Arend WP, Smith MF Jr, Janson RW, Joslin FG. IL-1 receptor antagonist and IL-1 beta production in human monocytes are regulated differently. J Immunol 1991; 147: 1530–6. [PubMed] [Google Scholar]
- 43. Spinas GA, Keller U, Brockhaus M. Release of soluble receptors for tumour necrosis factor (TNF) in relation to circulating TNF during experimental endotoxinemia. J Clin Invest 1992; 90: 533–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44. Espat NJ, Rogy MA, Copeland EM, Moldawer LL. CMNSG Guest Lecture. Interleukin-1, interleukin-1 receptor, and interleukin-1 receptor antagonist. Proc Nutr Soc 1994; 53: 393–400. [DOI] [PubMed] [Google Scholar]
- 45. Ertel W, Kremer JP, Kenney J et al. Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood 1995; 85: 1341–7. [PubMed] [Google Scholar]
- 46. Marchant A, Deviere J, Byl B, De Groote D, Vincent J-L, Goldman M. Interleukin-10 production during septicaemia. Lancet 1994; 343: 707–8. [DOI] [PubMed] [Google Scholar]
- 47. Imura H, Fukata J, Mori T. Cytokines and endocrine function: an interaction between the immune and neuroendocrine systems. Clin Endocrinol 1991; 35: 107–15. [DOI] [PubMed] [Google Scholar]
- 48. Koff WC, Fann AV, Dunegan MA, Lachman LB. Catecholamine-induced suppression of interleukin-1 production. Lymphokine Research 1986: 5: 239–47. [PubMed] [Google Scholar]
- 49. Severn A, Rapson NT, Hunter CA, Liew FY. Regulation of tumor necrosis factor production by adrenaline and beta-adrenergic agonists. J Immunol 1992; 148: 3441–5. [PubMed] [Google Scholar]
- 50. Barber AE, Coyle SM, Marano MA et al. Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man. J Immunol 1993; 150: 1999–2006. [PubMed] [Google Scholar]
- 51. Endres S, van-der-Meer JW, Dinarello CA. Interleukin-1 in the pathogenesis of fever. Eur J Clin Invest 1987; 17: 469–74. [DOI] [PubMed] [Google Scholar]
- 52. Gwosdow AR, Kumar MSA, Bode HH. Interleukin 1 stimulation of the hypothalamic-pituitary-adrenal axis. Am J Physiol 1990; 258: E65–70. [DOI] [PubMed] [Google Scholar]
- 53. Spath-Schwalbe E, Born J, Schrezenmeier H et al. Interleukin-6 stimulates the hypothalamus-pituitary-adrenocortical axis in man. J Clin Endocrinol Metab 1994; 79: 1212–14. [DOI] [PubMed] [Google Scholar]
- 54. Dejana E, Breviario F, Erroi A et al. Modulation of endothelial cell functions by different molecular species of interleukin 1. Blood 1987; 69: 695–9. [PubMed] [Google Scholar]
- 55. Fukushima R, Saito H, Taniwaka K et al. Different roles of IL-1 and TNF on hemodynamics and interorgan amino acid metabolism in awake dogs. Am J Physiol 1992; 262: E275–81. [DOI] [PubMed] [Google Scholar]
- 56. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumour necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91. [DOI] [PubMed] [Google Scholar]
- 57. Jones EY, Stuart DI, Walker NPC. Structure of tumour necrosis factor. Nature 1989; 338: 225–8. [DOI] [PubMed] [Google Scholar]
- 58. Scuderi P, Sterling KE, Lam KS et al. Raised serum levels of tumour necrosis factor in parasitic infections. Lancet 1986; ii: 1364–5. [DOI] [PubMed] [Google Scholar]
- 59. Englemann H, Novick D, Wallach D. Two tumour necrosis factor-binding proteins purified from human urine. Evidence for immunological cross-reactivity with cell surface tumour necrosis factor receptors. J Biol Chem 1990; 265: 1531–6. [PubMed] [Google Scholar]
- 60. Van der Poll T, Romijn JA, Endert E, Borm JJJ, Buller HR, Sauerwein HP. Tumour necrosis factor mimics the metabolic response to acute infection in healthy humans. Am J Physiol 1991; 261: E457–65. [DOI] [PubMed] [Google Scholar]
- 61. Hauner H, Petruschke T, Russ M, Rohrig K, Eckel J. Effects of tumour necrosis factor alpha (TNF alpha) on glucose transport and lipid metabolism of a newly-differentiated human fat cells in cell culture. Diabetologia 1995; 38: 764–71. [DOI] [PubMed] [Google Scholar]
- 62. Stouthard JML, Romijn JA, Van der Poll T et al. Endocrinologic and metabolic effects on interleukin-6 in humans. Am J Physiol 1995; 268: E813–19. [DOI] [PubMed] [Google Scholar]
- 63. Beddoe AH, Streat SJ, Hill GL. Evaluation of an in vivo prompt gamma neutron activation facility for body composition studies in critically ill intensive care patients: results on 41 normals. Metabolism 1984; 33: 270–80. [DOI] [PubMed] [Google Scholar]
- 64. Frayn KN, Shadid S, Hamlani R et al. Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am J Physiol 1994; 266: E308–17. [DOI] [PubMed] [Google Scholar]
- 65. Frayn KN, Coppack SW, Fielding BA, Humphreys SM. Coordinated regulation of hormone-sensitive lipase and lipoprotein lipase in human adipose tissue in vivo: implications for the control of fat storage and fat mobilization. Adv Enzyme Regul 1995; 35: 163–78. [DOI] [PubMed] [Google Scholar]
- 66. Sidossis LS, Coggan AR, Gastaldelli A, Wolfe RR. Pathway of free fatty acid oxidation in human subjects. Implications for tracer studies. J Clin Invest 1995; 95: 278–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 67. Dagenais GR, Tancredi RG, Zierler KL. Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm. J Clin Invest 1976; 58: 421–31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 68. Robin AP, Askanazi J, Greenwood MRC, Carpentier YA, Gump FE, Kinney JM. Lipoprotein lipase activity in surgical patients: influence of trauma and infection. Surgery 1981; 90: 401–8. [PubMed] [Google Scholar]
- 69. Lithell H, Boberg J, Hellsing K, Lundqvist G, Vessby G. Lipoprotein-lipase activity in human skeletal muscle and adipose tissue in fasting and the fed states. Atherosclerosis 1978; 30: 89–94. [DOI] [PubMed] [Google Scholar]
- 70. Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 1989; 320: 1060–8. [DOI] [PubMed] [Google Scholar]
- 71. Lafontan M, Berlan M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 1993; 34: 1057–91. [PubMed] [Google Scholar]
- 72. Cuthbertson DP. Observations on the disturbance of metabolism produced by injury to the limbs. Q J Med 1932; 1: 233–46. [Google Scholar]
- 73. Frayn KN. Hormonal control of metabolism in trauma and sepsis, Clin Endocrinol 1986; 24: 577–99. [DOI] [PubMed] [Google Scholar]
- 74. Voerman HJ, Groeneveld ABJ, de Boer H et al. Time course and variability of the endocrine and metabolic response to severe sepsis. Surgery 1993; 114: 951–9. [PubMed] [Google Scholar]
- 75. Stoner HB, Little RA, Frayn KN, Elebute AE, Tresadern J, Gross E. The effect of sepsis on the oxidation of carbohydrate and fat. Br J Surg 1983; 70: 32–5. [DOI] [PubMed] [Google Scholar]
- 76. Nanni G, Siegel JH, Coleman B, Fader P, Castiglione R. Increased lipid fuel dependence in the critically ill septic patient. J Trauma 1984; 24: 14–30. [DOI] [PubMed] [Google Scholar]
- 77. Askanazi J, Carpentier YA, Elwyn DH et al. Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Ann Surg 1980; 191: 40–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 78. White RH, Frayn KN, Little RA, Threlfall CJ, Stoner HB, Irving MH. Hormonal and metabolic responses to glucose infusion in sepsis studied by the hyperglycemic glucose clamp technique. JPEN J Parenter Enteral Nutr 1987; 11: 345–53. [DOI] [PubMed] [Google Scholar]
- 79. Levinson MR, Groeger JS, Jeevanandam M, Brennan MF. Free fatty acid turnover and lipolysis in septic mechanically ventilated cancer-bearing humans. Metabolism 1988; 37: 618–25. [DOI] [PubMed] [Google Scholar]
- 80. Pitkanen O, Takala J, Poyhonen M, Kari A. Nitrogen and energy balance in septic and injured intensive care patients: response to parenteral nutrition. Gin Nutr 1991; 10: 258–65. [DOI] [PubMed] [Google Scholar]
- 81. Frayn KN, Coppack SW, Humphreys SM, Whyte PL. Metabolic characteristics of human adipose tissue in vivo. Clin Sci 1989; 76: 509–16. [DOI] [PubMed] [Google Scholar]
- 82. Bonadonna RC, Groop LC, Zych K, Shank M, DeFronzo RA. Dose-dependent effect of insulin on plasma free fatty acid turnover and oxidation in humans. Am J Physiol 1990; 259: E736–50. [DOI] [PubMed] [Google Scholar]
- 83. Groop LC, Bonadonna RC, Shank M, Petrides AS, DeFronzo RA. Role of free fatty acids and insulin in determining free fatty acid and lipid oxidation in man. J Clin Invest 1991; 87: 83–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 84. Nordenstrom J, Carpentier YA, Askanazi J et al. Free fatty acid mobilization and oxidation during total parenteral nutrition in trauma and infection. Ann Surg 1983; 198: 725–35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 85. Wolfe RR, Herndon DN, Jahoor F, Miyoshi H, Wolfe M. Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 1987; 317: 403–8. [DOI] [PubMed] [Google Scholar]
- 86. Bessey PQ, Walters JM, Aoki TT, Wilmore DW. Combined hormonal infusion simulates the metabolic response to injury. Ann Surg 1984; 200: 264–81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 87. Gelfand RA, Matthews DE, Bier DM, Sherwin RS. Role of counterregulatory hormones in the catabolic response to stress. J Clin Invest 1984; 74: 2238–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 88. Bodel P, Atkins E. Release of endogenous pyrogen by human monocytes. N Engl J Med 1967; 276: 1002–8. [DOI] [PubMed] [Google Scholar]
- 89. Lefevre G, Dhiainaut FJ, Tallet F et al. Individual free fatty acid and lactate uptake in the human heart during severe sepsis. Ann Clin Biochem 1988; 25: 546–51. [DOI] [PubMed] [Google Scholar]
- 90. Kuzin MI, Shimkevich LL, Istratov VG, Amiraslanov IUA. Diagnostic role of determination of plasma free fatty acid spectrum in patients with suppurative surgical infection. Vestn Khir 1984; 132: 3–8. [PubMed] [Google Scholar]
- 91. Kaufmann RL, Matson CF, Beisel WR. Hypertriglyceridemia produced by endotoxin: role of impaired triglyceride disposal mechanisms. J Infect Dis 1976; 133: 548–55. [DOI] [PubMed] [Google Scholar]
- 92. Wolfe RR, Shaw JH. Glucose and FFA kinetics in sepsis: role of glucagon and sympathetic nervous system activity. Am J Physiol 1985; 248: E236–43. [DOI] [PubMed] [Google Scholar]
- 93. Billow J. Lipid mobilisation and utilisation. Med Sport Sci 1988; 27: 140–63. [Google Scholar]
- 94. Nonogaki K, Fuller GM, Fuentes NL et al. Interleukin-6 stimulates hepatic triglyceride secretion in rats. Endocrinology 1995; 136: 2143–9. [DOI] [PubMed] [Google Scholar]
- 95. Clutter WE, Bier DM, Shah SD, Cryer PE. Epinephrine plasma metabolic clearance rates and physiologic thresholds for metabolic and hemodynamic actions in man. J Clin Invest 1980; 66: 94–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 96. Galster AD, Clutter WE, Cryer PE, Collins JA, Bier DM. Epinephrine plasma thresholds for lipolytic effects in man: measurements of fatty acid transport with [1–13C] palmitic acid. J Clin Invest 1981; 67: 1729–38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 97. Kurpad A, Khan K, Calder AG et al. Effect of noradrenaline on glycerol turnover and lipolysis in the whole body and subcutaneous adipose tissue in humans in vivo. Clin Sci 1994; 86: 177–84. [DOI] [PubMed] [Google Scholar]
- 98. Divertie GD, Jensen MD, Miles JM. Stimulation of lipolysis in humans by physiological hypercortisolemia. Diabetes 1991; 40: 1228–32. [DOI] [PubMed] [Google Scholar]
- 99. Freyschuss U, Hjemdahl P, Juhlin-Dannfelt A, Linde B. Cardiovascular and metabolic responses to low dose adrenaline infusion: an invasive study in humans. Clin Sci 1986; 70: 199–206. [DOI] [PubMed] [Google Scholar]
- 100. Simonsen L, Billow J, Madsen J, Christensen NJ. Thermogenic response to epinephrine in the forearm and abdominal subcutaneous adipose tissue. Am J Physiol 1992; 263: E850–5. [DOI] [PubMed] [Google Scholar]
- 101. Benedict CR, Grahame-Smith DG. Plasma noradrenaline and adrenaline concentrations and dopamine-beta-hydroxylase activity in patients with shock due to septicaemia, trauma and haemorrhage. Q J Med 1978; 47: 1–20. [PubMed] [Google Scholar]
- 102. Webber J, Simpson E, Parkin H, Macdonald IA. Metabolic effects of acute hyperketonaemia in man before and during an hyperinsulinaemic euglycaemic clamp. Clin Sci 1994; 86: 677–87. [DOI] [PubMed] [Google Scholar]
- 103. Beylot M, Chassard D, Chambrier C et al. Metabolic effects of a d-beta-hydroxybutrate infusion in septic patients: inhibition of lipolysis and glucose production but not leucine oxidation. Crit Care Med 1994; 22: 1091–8. [DOI] [PubMed] [Google Scholar]
- 104. Ebeling P, Koivisto VA. Non-esterified fatty acids regulate lipid and glucose oxidation and glycogen synthesis in healthy man. Diabetologia 1994; 37: 202–9. [DOI] [PubMed] [Google Scholar]
- 105. Romanosky AJ, Bagby GJ, Bockman EL, Spitzer JJ. Free fatty acid utilization by skeletal muscle after endotoxin administration. Am J Physiol 1980; 239: E391–5. [DOI] [PubMed] [Google Scholar]
- 106. Kovach AGB, Rosell S, Sandor P, Koltay E, Kovach E, Tomka N. Blood flow, oxygen consumption, and free fatty acid release in subcutaneous adipose tissue during hemorrhagic shock in control and phenoxybenzamine-treated dogs. Circ Res 1970; 26: 733–41. [DOI] [PubMed] [Google Scholar]
- 107. Spector AA. Fatty acid binding to plasma albumin. J Lipid Res 1975; 16: 165–79. [PubMed] [Google Scholar]
- 108. Issekutz B Jr, Shaw WAS, Issekutz TB. Effect of lactate on FFA and glycerol turnover in resting and exercising dogs. J Appl Physiol 1975; 39: 349–53. [DOI] [PubMed] [Google Scholar]
- 109. De Pergola G, Cignarelli M, Nardelli G et al. Influence of lactate on isoproterenol-induced lipolysis and beta-adrenoceptors distribution in human fat cells. Horm Metab Res 1989; 21: 210–13. [DOI] [PubMed] [Google Scholar]
- 110. LeQuire VS, Hutcherson JD, Hamilton RL, Gray ME. The effects of bacterial endotoxin on lipid metabolism. I. The responses of the serum lipids of rabbits to single and repeated injections of Shear's polysaccharide. J Exp Med 1959; 110: 293–309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 111. Hirsch RL, McKay DG, Travers RI, Skraly RK. Hyperlipidemia, fatty liver, and bromsulfophthalein retention in rabbits injected intravenously with bacterial endotoxin. J Lipid Res 1964; 5: 563–8. [PubMed] [Google Scholar]
- 112. Griffiths J, Groves AC, Leung FY. Hypertriglyceridemia and hypoglycemia in Gram-negative sepsis in the dog. Surg Gynecol Obstet 1973; 136: 897–903. [PubMed] [Google Scholar]
- 113. Rouzer CA, Cerami A. Hypertriglyceridemia associated with Trypanosoma brucei infection in rabbits: role of defective triglyceride removal. Mol Biochem Parasitol 1980; 2: 31–8. [DOI] [PubMed] [Google Scholar]
- 114. Feingold KR, Serio MK, Adi S, Moser AH, Grunfeld C. Tumour necrosis factor stimulates hepatic lipid synthesis and secretion. Endocrinology 1989; 124: 2336–42. [DOI] [PubMed] [Google Scholar]
- 115. Feingold KR, Grunfeld C, Moser AH, Lear SR, Huang B-J. Tumour necrosis factor-alpha stimulates hepatic lipogenesis in the rat in vivo. J Clin Invest 1987; 80: 184–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 116. Starnes HF Jr, Warren RS, Jeevanandam M et al. Tumour necrosis factor and the acute metabolic response to tissue injury in man. J Clin Invest 1988; 82: 1321–5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 117. Kurzrock R, Rhode MF, Quesada JR et al. Recombinant gamma interferon induces hypertriglycerdemia and inhibits post-heparin lipase activity in cancer patients. J Exp Med 1986; 164: 1093–101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 118. Feingold KR, Staprans I, Memon RA et al. Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high doses inhibit clearance. J Lipid Res 1992; 33: 1765–76. [PubMed] [Google Scholar]
- 119. Nonogaki K, Moser AH, Feingold KR, Grunfeld C. Alpha-adrenergic receptors mediate the hypertriglyceridemia induced by endotoxin, but not tumour necrosis factor, in rats. Endocrinology 1994; 135: 2644–50. [DOI] [PubMed] [Google Scholar]
- 120. Evans RD, Argiles JM, Williamson DH. Metabolic effects of tumour necrosis factor-alpha (cachectin) and interleukin-1. Clin Sci 1989; 77: 357–64. [DOI] [PubMed] [Google Scholar]
- 121. Hellerstein MK, Neese RA, Schwarz J-M. Model for measuring absolute rates of hepatic de novo lipogenesis and reesterification of free fatty acids. Am J Physiol 1993; 265: E814–20. [DOI] [PubMed] [Google Scholar]
- 122. Wolfe RR, Shaw JHF, Durkot MJ. Effect of sepsis on VLDL kinetics: responses in basal state and during glucose infusion. Am J Physiol 1985; 248: E732–40. [DOI] [PubMed] [Google Scholar]
- 123. Bagby GJ, Corll CB, Martinez RR. Triacylglycerol kinetics in endotoxic rats with suppressed lipoprotein lipase activity. Am J Physiol 1987; 253: E59–64. [DOI] [PubMed] [Google Scholar]
- 124. Beutler B, Mahoney J, Le Trang N, Pekala P, Cerami A. Purification of cachectin, a lipoprotein lipase-suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med 1985; 161: 984–95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 125. Bagby GJ, Corll CB, Thompson JJ, Wilson LA. Lipoprotein lipase-suppressing mediator in serum of endotoxin-treated rats. Am J Physiol 1986; 251: E470–6. [DOI] [PubMed] [Google Scholar]
- 126. Morin CL, Schlaepfer IR, Eckel RH. Tumour necrosis factor-alpha eliminates binding of NF-Y and an octamer-binding protein to the lipoprotein lipase promoter in 3T3-L1 adipocytes. J Clin Invest 1995; 95: 1684–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 127. Mackay AG, Oliver JD, Rogers MP. Regulation of lipoprotein lipase activity and mRNA content in rat epididymal adipose tissue in vitro by recombinant tumour necrosis factor. Biochem J 1990; 269: 123–6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 128. Kern PA. Recombinant human tumor necrosis factor does not inhibit lipoprotein lipase in primary cultures of isolated human adipocytes. J Lipid Res 1988; 29: 909–14. [PubMed] [Google Scholar]
- 129. Nordenstrom J, Carpentier YA, Askanazi J et al. Metabolic utilization of intravenous fat emulsion during total parenteral nutrition. Ann Surg 1982; 196: 221–30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130. Bagby GJ, Spitzer JA. Lipoprotein lipase activity in rat heart and adipose tissue during endotoxic shock. Am J Physiol 1980; 238: H325–30. [DOI] [PubMed] [Google Scholar]
- 131. Lanza-Jacoby S, Tabares A. Triglyceride kinetics, tissue lipoprotein lipase, and liver lipogenesis in septic rats. Am J Physiol 1990; 258: E678–85. [DOI] [PubMed] [Google Scholar]
- 132. Semb H, Peterson J, Tavernier J, Olivecrona T. Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo. J Biol Chem 1987; 262: 8390–4. [PubMed] [Google Scholar]
- 133. Fried SK, Zechner R. Cachectin/tumour necrosis factor decreases human adipose tissue lipoprotein lipase mRNA levels, synthesis, and activity. J Lipid Res 1989; 30: 1917–23. [PubMed] [Google Scholar]
- 134. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumour necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 135. Kern PA, Saghizadeh M, Ong JM, Bosch RJ, Deem R, Simsolo RB. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J Clin Invest 1995; 95: 2111–19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 136. van der Poll T, Buller HR, ten Cate H et al. Activation of coagulation after administration of tumour necrosis factor to normal subjects. N Engl J Med 1990; 322: 1622–7. [DOI] [PubMed] [Google Scholar]
- 137. van Deventer SJH, Buller HR, ten Cate JW, Aarden LA, Hack CE, Sturk A. Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic, and complement pathways. Blood 1990; 76: 2520–6. [PubMed] [Google Scholar]
- 138. Baldo A, Sniderman AD, St-Luce S et al. The adipsin-acylation stimulating protein system and regulation of intracellular triglyceride synthesis. J Clin Invest 1993; 92: 1543–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 139. Maslowska MH, Sniderman AD, Maclean LD, Cianflone C. Regional differences in triacylglycerol synthesis in adipose tissue and in cultured preadipocytes. J Lipid Res 1993; 34: 219–28. [PubMed] [Google Scholar]
- 140. Cahill GF Jr, Herrera MG, Morgan AP et al. Hormone-fuel interrelationships during fasting. J Clin Invest 1966; 45: 1751–69. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 141. Neufeld HA, Pace JA, White FE. The effect of bacterial infections on ketone concentrations in rat liver and blood and on free fatty acid concentrations in rat blood. Metabolism 1976; 25: 877–84. [DOI] [PubMed] [Google Scholar]
- 142. Kaminski MV Jr, Neufeld HA, Pace JG. Effect of inflammatory and noninflammatory stress on plasma ketone bodies and free fatty acids and on glucagon and insulin in peripheral and portal blood. Inflammation 1979; 3: 289–94. [DOI] [PubMed] [Google Scholar]
- 143. Marchuk JB, Finley RJ, Groves AC, Wolfe LI, Holliday RL, Duff JH. Catabolic hormones and substrate patterns in septic patients. J Surg Res 1977; 23: 177–82. [DOI] [PubMed] [Google Scholar]
- 144. Memon RA, Feingold KR, Moser RH et al. Differential effects of interleukin-1 and tumour necrosis factor on ketogenesis. Am J Physiol 1992; 263: E301–9. [DOI] [PubMed] [Google Scholar]
- 145. Cabana VG, Siegel JN, Sabesin SM. Effects of the acute phase response on the concentration and density distribution of plasma lipids and apolipoproteins. J Lipid Res 1989; 30: 39–49. [PubMed] [Google Scholar]
- 146. Ulevitch RJ, Johnston AR, Weinstein DB. New function for high density lipoproteins. Their participation in intravascular reactions of bacterial lipopolysaccharides. J Clin Invest 1979; 64: 1516–24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 147. Munford RS, Dietschy JM. Effect of specific antibodies, hormones and lipoproteins on bacterial lipopolysaccharides injected into the rat. J Infect Dis 1985; 152: 177–84. [DOI] [PubMed] [Google Scholar]
- 148. Levine DM, Parker TS, Donnelly TM, Walsh A, Rubin AL. In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci USA 1993; 90: 12 040–4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 149. Van Lenten BJ, Fogelman AM, Haberland ME, Edwards PA. The role of lipoproteins and receptor-mediated endocytosis in the transport of bacterial lipopolysaccharides. Proc Natl Acad Sci USA 1986; 83: 2704–8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 150. Harris HW, Grunfeld C, Feingold KR, Rapp JH. Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice. J Clin Invest 1990; 86: 696–702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 151. van der Poll T, Braxton CC, Coyle SM et al. Effect of hypertriglyceridemia on endotoxin responsiveness in humans. Infect Immun 1995; 63: 3396–400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 152. Schuberth O, Wretlind A. Intravenous infusion of fat emulsions, phosphatides and emulsifying agents. Clinical and experimental studies. Acta Chirurgica Scandinavica. Supplementum 1961; 278: 1–21. [Google Scholar]
- 153. Wretlind A. Complete intravenous nutrition. Theoretical and experimental background. Nutrition and Metabolism 1972; 14 (Suppl): 1–57. [PubMed] [Google Scholar]
- 154. Shaw JH, Holdaway CM. Protein-sparing effect of substrate infusion in surgical patients is governed by the clinical state, and not by the individual substrates infused. JPEN J Parenter Enteral Nutr 1988; 12: 433–40. [DOI] [PubMed] [Google Scholar]
- 155. Beaufrere B, Chassard D, Broussolle C, Riou JP, Beylot M. Effects of d-beta-hydroxybutyrate and long- and medium-chain triglycerides on leucine metabolism in humans. Am J Physiol 1992; 262: E268–74. [DOI] [PubMed] [Google Scholar]
- 156. Walker M, Shmueli E, Daley SE, Cooper BG, Alberti KG. Do nonesterified fatty acids regulate skeletal muscle protein turnover in humans? Am J Physiol 1993; 265: E357–61. [DOI] [PubMed] [Google Scholar]
- 157. Askanazi J, Nordenstrom J, Rosenbaum SH et al. Nutrition for the patient with respiratory failure: glucose vs. fat. Anesthesiology 1981; 54: 373–7. [DOI] [PubMed] [Google Scholar]
- 158. Dahlan W, Richelle M, Kulapongse S, Rossle C, Deckelbaum RJ, Carpentier YA. Modification of erythrocyte membrane lipid composition by a single intravenous infusion of phospholipid-triacylglycerol emulsions in man. Clin Nutr 1992; 11: 255–61. [DOI] [PubMed] [Google Scholar]
- 159. Simeons Ch, Richelle M, Rossle C, Derluyn M, Deckelbaum RJ, Carpentier YA. Manipulation of tissue fatty acid profile by intravenous lipid in dogs. Clin Nutr 1995; 14: 177–85. [DOI] [PubMed] [Google Scholar]
- 160. Fischer GW, Hunter KW, Wilson SR, Mease AD. Diminished bacterial defences with intralipid. Lancet 1980; ii: 819–20. [DOI] [PubMed] [Google Scholar]
- 161. Seidner DL, Masciolo EA, Istfan NW et al. Effects of long-chain triglyceride emulsions on reticuloendothelial system function in humans. JPEN J Parenter Enteral Nutr 1989; 13: 614–19. [DOI] [PubMed] [Google Scholar]
- 162. Jensen GL, Mascioli EA, Seidner DL et al. Parenteral infusion of long- and medium-chain triglycerides and reticuloendothelial system function in man. JPEN J Parenter Enteral Nutr 1990; 14: 467–71. [DOI] [PubMed] [Google Scholar]
- 163. Skeie B, Askanazi J, Rothkopf MM, Rosenbaum SH, Kvetan V, Thomashow B. Intravenous fat emulsions and lung function: a review. Crit Care Med 1988; 16: 183–94. [DOI] [PubMed] [Google Scholar]
- 164. Venus B, Prager R, Patel CB, Sandoval E, Sloan P, Smith RA. Cardiopulmonary effects of intralipid infusion in critically ill patients. Crit Care Med 1988; 16: 587–90. [DOI] [PubMed] [Google Scholar]
- 165. Dahl PE, Østerud B, Kjaeve JC. Haematological disorders and lung alveolar macrophage function following total parenteral nutrition in rats. Clin Nutr 1992; 11: 269–76. [DOI] [PubMed] [Google Scholar]
- 166. Hexeberg S, Hessevik I, Hexeberg E. Intravenous lipid infusion results in myocardial lipid droplet accumulation combined with reduced myocardial performance in heparinized rabbits. Acta Physiol Scand 1995; 153: 159–68. [DOI] [PubMed] [Google Scholar]
- 167. Oliver MF, Opie LH. Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. Lancet 1994; 343: 155–8. [DOI] [PubMed] [Google Scholar]
- 168. Caruna JA Jr, Monies M, Camera DS, Ummer A, Potmesil SH, Gage AA. Functional and histopathologic changes in the liver during sepsis. Surg Gynecol Obstet 1982; 154: 653–6. [PubMed] [Google Scholar]
- 169. Chen WJ. Utilization of intralipid in septic rats: effects of sepsis on the clearance of exogenous fat emulsion from various organs. JPEN J Parenter Enteral Nutr 1986; 10: 482–6. [DOI] [PubMed] [Google Scholar]
- 170. Rossner S, Johansson C, Walldius G, Aly A. Intralipid clearance and lipoprotein pattern in men with advanced alcoholic liver cirrhosis. Am J Clin Nutr 1979; 32: 2022–6. [DOI] [PubMed] [Google Scholar]
- 171. Muscaritoli M, Cangiano C, Cascino A et al. Exogenous lipid clearance in compensated liver cirrhosis. JPEN J Parenter Enteral Nutr 1986; 10: 599–603. [DOI] [PubMed] [Google Scholar]
- 172. Delafosse B, Viale JP, Tissot S et al. Effects of glucose-to-lipid ratio and type of lipid on substrate oxidation rate in patients. Am J Physiol 1994; 267: E775–80. [DOI] [PubMed] [Google Scholar]
- 173. Shaw JH, Wildbore M, Wolfe RR. Whole body protein kinetics in severely septic patients. The response to glucose and total parenteral nutrition. Ann Surg 1987; 205: 288–94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 174. Alexander JW, Gonce SJ, Miskell PW, Peck MD, Sax H. A new model for studying nutrition in peritonitis. The adverse effect of overfeeding. Ann Surg 1989; 209: 334–40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 175. Quinn T, Askanazi J. Nutrition and cardiac disease. Crit Care Clin 1987; 3: 167–84. [PubMed] [Google Scholar]
- 176. Shaw-Delanty SN, Elwyn DH, Askanazi J, Iles M, Schwarz Y, Kinney JM. Resting energy expenditure in injured, septic, and malnourished adult patients on intravenous diets. Clin Nutr 1990; 9: 305–12. [DOI] [PubMed] [Google Scholar]
- 177. Hyltander A, Arfvidsson B, Korner U, Sandstrom R, Lundholm K. Metabolic rate and nitrogen balance in patients receiving bolus intermittent total parenteral nutrition infusion. JPEN J Parenter Enteral Nutr 1993; 17: 158–64. [DOI] [PubMed] [Google Scholar]
- 178. Blackburn GL, Bistrian BR. Nutritional care of the injured and/or septic patient. Surg Clin North Am 1976; 56: 1195–224. [DOI] [PubMed] [Google Scholar]
- 179. Moore FA, Feliciano DV, Andrassy RJ et al. Early enteral feeding, compared with parenteral, reduces postoperative septic complications. The results of a meta-analysis. Ann Surg 1992; 216: 172–83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 180. Kudsk KA, Croce MA, Fabian TC et al. Enteral versus parenteral feeding. Effects on septic morbidity after blunt and penetrating abdominal trauma. Ann Surg 1992; 215: 503–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 181. Minard G, Kudsk KA. Effect of route of feeding on the incidence of septic complications in critically ill patients. Semin Respir Infect 1994; 9: 228–31. [PubMed] [Google Scholar]
- 182. Loannides-Demos LL, Liolios L, Topliss DJ, McLean AJ. A prospective audit of total parenteral nutrition at a major teaching hospital. Med J Aust 1995; 163: 233, 235–7. [DOI] [PubMed] [Google Scholar]
- 183. Border JR, Hassett J, LaDuca J et al. The gut origin septic states in blunt multiple trauma (ISS = 40) in the ICU. Ann Surg 1987; 206: 427–48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 184. Deitch EA. Bacterial translocation: the influence of dietary variables. Gut 1994; 35 (Suppl 1): S23–7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 185. Kudsk KA, Minard G, Wojrysiak SL, Croce M, Fabian T, Brown RO. Visceral protein response to enteral versus parenteral nutrition and sepsis in patients with trauma. Surgery 1994; 116: 516–23. [PubMed] [Google Scholar]
- 186. Barber AE, Jones WG III, Minei JP, Fahey TJ III, Lowry SF, Shires GT. Bacterial overgrowth and intestinal atrophy in the etiology of gut barrier failure in the rat. Am J Surg 1991; 161: 300–4. [DOI] [PubMed] [Google Scholar]
- 187. Sodeyama M, Gardiner KR, Regan MC, Kirk SJ, Efron G, Barbul A. Sepsis impairs gut amino acid absorption. Am J Surg 1993; 165: 150–4. [DOI] [PubMed] [Google Scholar]
- 188. Singh G, Harkema JM, Mayberry AJ, Chaudry IH. Severe depression of gut absorptive capacity in patients following trauma or sepsis. J Trauma 1994; 36: 803–8. [DOI] [PubMed] [Google Scholar]
- 189. Gardiner K, Barbul A. Intestinal amino acid absorption during sepsis. JPEN J Parenter Enteral Nutr 1993; 17: 277–83. [DOI] [PubMed] [Google Scholar]
- 190. Gosche JR, Garrison RN, Harris PD, Cryer HG. Absorptive hyperemia restores intestinal blood flow during Escherichia coli sepsis in the rat. Arch Surg 1990; 125: 1573–6. [DOI] [PubMed] [Google Scholar]
- 191. Cerra FB, McPherson JP, Konstantinides FN, Konstantinides NN, Teasley KM. Enteral nutrition does not prevent multiple organ failure syndrome (MOFS) after sepsis. Surgery 1988; 104: 727–33. [PubMed] [Google Scholar]
- 192. Beau P, Chammartin F, Matuchansky C. Biological hepatic abnormalities, cholestatic jaundice and hospital artificial nutrition. A comparative study in adults with cyclic total parenteral nutrition and enteral nutrition. Gastroenterol Clin Biol 1988; 12: 326–31. [PubMed] [Google Scholar]
- 193. Moran-Penco JM, Macia-Bottejara E, Salas-Martinez J et al. Liver lipid composition and intravenous, intraperitoneal, and enteral administration of intralipid. Nutrition 1994; 10: 26–31. [PubMed] [Google Scholar]
- 194. Spector MH, Levine GM, Deren JJ. Direct and indirect effects of dextrose and amino acids on gut mass. Gastroenterology 1977; 72: 706–10. [PubMed] [Google Scholar]
- 195. Fong YM, Marno MA, Barber A et al. Total parenteral nutrition and bowel rest modify the metabolic response to endotoxin in humans. Ann Surg 1989; 210: 449–57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 196. Couse N, Pickford LR, Mitchell CJ, Macfie J. Total parenteral nutrition by peripheral vein—substitute or supplement to the central venous route? A prospective trial. Clin Nutr 1993; 12: 213–16. [DOI] [PubMed] [Google Scholar]
- 197. von-Meyenfeldt MM, Stapert J, de-Jong PC, Soeters PB, Wesdorp RI, Greep JM. TPN catheter sepsis: lack of effect of subcutaneous tunnelling of PVC catheters on sepsis rate. JPEN JParenter Enteral Nutr 1980; 4: 514–17. [DOI] [PubMed] [Google Scholar]
- 198. Mughal MM. Complications of intravenous feeding catheters. Br J Surg 1989; 76: 15–21. [DOI] [PubMed] [Google Scholar]
- 199. Iriyama K, Nishiwaki H, Terashima H et al. Apolipoprotein C-11 modifications associated with an infusion of artificial lipid particles. JPEN J Parenter Enteral Nutr 1988; 12: 60–2. [DOI] [PubMed] [Google Scholar]
- 200. Tonouchi H, Iriyama K, Carpentier YA. Transfer of apolipoproteins between plasma lipoproteins and exogenous lipid particles after repeated bolus injections or during a continuous infusion of fat emulsion. JPEN J Parenter Enteral Nutr 1990; 14: 381–5. [DOI] [PubMed] [Google Scholar]
- 201. Bach AC, Storck D, Meraihi Z. Medium-chain triglyceride-based fat emulsions: an alternative energy supply in stress and sepsis. JPEN J Parenter Enteral Nutr 1988; 12 (Suppl 6): 82S–88S. [DOI] [PubMed] [Google Scholar]
- 202. Mascioli EA, Lopes S, Randall S et al. Serum fatty acid profiles after intravenous medium chain triglyceride administration. Lipids 1989; 24: 793–8. [DOI] [PubMed] [Google Scholar]
- 203. Ball MJ, White K. Metabolic effects of intravenous medium-and long-chain triacylglycerols in critically ill patients. Gin Sci 1989; 76: 165–70. [DOI] [PubMed] [Google Scholar]
- 204. Ball MJ. Hematological and biochemical effects of parenteral nutrition and medium-chain triglycerides: comparison with long-chain triglycerides. Am J Clin Nutr 1991; 53: 916–22. [DOI] [PubMed] [Google Scholar]
- 205. Bach AC, Babayon VK. Medium-chain triglycerides: an update. Am J Clin Nutr 1982; 36: 950–62. [DOI] [PubMed] [Google Scholar]
- 206. Cotter R, Taylor CA, Johnson R, Rowe WB. A metabolic comparison of a pure long-chain triglyceride lipid emulsion (LCT) and various medium-chain triglycerides (MCT)-LCT combination emulsions in dogs. Am J Clin Nutr 1987; 45: 927–39. [DOI] [PubMed] [Google Scholar]
- 207. Weissman C, Chiolero R, Askanazi J, Gil KM, Elwyn D, Kinney JM. Intravenous infusion of a medium-chain triglyceride-enriched lipid emulsion. Crit Care Med 1988; 16: 1183–90. [DOI] [PubMed] [Google Scholar]
- 208. Sherwin RS, Hendler RG, Felig P. Effect of ketone infusions on amino acid and nitrogen metabolism in man. J Clin Invest 1975; 55: 1382–90. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 209. Crowe PJ, Royle GT, Wagner D, Burke JF. Does hyperketonemia affect protein or glucose kinetics in postabsorptive or traumatized man? J Surg Res 1989; 47: 313–18. [DOI] [PubMed] [Google Scholar]
- 210. Jiang ZM, Zhang SY, Wang XR, Yang NF, Zhu Y, Wilmore D. A comparison of medium-chain and long-chain triglycerides in surgical patients. Ann Surg 1993; 217: 175–84. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 211. Stein TP, Fried RC, Torosian MH et al. Comparison of glucose, LCT, and LCT plus MCT as calorie sources for parenterally nourished septic rats. Am J Physiol 1986; 250: E312–18. [DOI] [PubMed] [Google Scholar]
- 212. Hamawy KJ, Moldawer LL, Georgieff M et al. The effect of lipid emulsions on reticuloendothelial system function in the injured animal. JPEN J Parenter Enteral Nutr 1985; 9: 559–65. [DOI] [PubMed] [Google Scholar]
- 213. Sedman PC, Somers SS, Ramsden CW, Brennan TG, Guillou PJ. Effects of different lipid emulsions on lymphocyte function during total parenteral nutrition. Br J Surg 1991; 78: 1396–9. [DOI] [PubMed] [Google Scholar]
- 214. Baldermann H, Wicklmayr M, Rett K, Banholzer P, Dietze G, Mehnert H. Changes of hepatic morphology during parenteral nutrition with lipid emulsions containing LCT or MCT/LCT quantified by ultrasound. JPEN J Parenter Enteral Nutr 1991; 15: 601–3. [DOI] [PubMed] [Google Scholar]
- 215. Jenkins AP, Thompson RP. Does the fatty acid profile of dietary fat influence its trophic effect on the small intestine mucosa? Gut 1993; 34: 358–64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 216. Ladas SD, Isaacs PE, Murphy GM, Sladen GE. Comparison of the effects of medium and long chain triglyceride containing lipid meals on gall bladder and small intestinal function in normal man. Gut 1984; 25: 405–11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217. Sandström R, Hyltander A, Körner U, Lundholm K. Structured triglycerides to postoperative patients: a safety and tolerance study. JPEN J Parenter Enteral Nutr 1993; 17: 153–7. [DOI] [PubMed] [Google Scholar]
- 218. Siderova VS, Carpentier YA, Dahlan W, Richelle M. Intravascular metabolism of different fatty acids during lipid infusion in man. Clin Nutr 1993; 12: 329–36. [DOI] [PubMed] [Google Scholar]
- 219. Calder PC, Sherrington EJ, Askanazi J, Newsholme EA. Inhibition of lymphocyte proliferation in vitro by two lipid emulsions with different fatty acid compositions. Clin Nutr 1994; 13: 69–74. [DOI] [PubMed] [Google Scholar]
- 220. Peck MD. Omega-3 polyunsaturated fatty acids: benefit or harm during sepsis. New Horizons 1994; 2: 230–6. [PubMed] [Google Scholar]
- 221. Cooper AL, Gibbons L, Horan MA, Little RA, Rothwell NJ. Effect of dietary fish oil supplementation on fever and cytokine production in human volunteers. Clin Nutr 1993; 12: 321–8. [DOI] [PubMed] [Google Scholar]
- 222. Endres S, Ghorbani R, Kelley VE et al. The effect of dietary supplementation with n3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 1989; 320: 265–71. [DOI] [PubMed] [Google Scholar]
- 223. Lee TH, Hoover RL, Williams JD et al. Effect of dietary enrichment with eicosapentaenoic and docosahexanoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med 1985; 312: 1217–24. [DOI] [PubMed] [Google Scholar]
- 224. Johnson JA III, Griswold JA, Muakkassa FF. Essential fatty acids influence survival in sepsis. J Trauma 1993; 35: 128–31. [DOI] [PubMed] [Google Scholar]
- 225. Bower RH, Cerra FB, Bershadsky B et al. Early enteral administration of a formula (impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit Care Med 1995; 23: 436–49. [DOI] [PubMed] [Google Scholar]
- 226. Grimm H, Tibell A, Norrlind B, Blecher C, Wilker S, Schwemmle K. Immunoregulation by parenteral lipids: impact of n-3 to n-6 fatty acid ratio. JPEN J Parenter Enteral Nutr 1994; 18: 417–21. [DOI] [PubMed] [Google Scholar]
- 227. Nordenstrom J. Metabolic complications of parenteral nutrition. In: Payne-James J, Grimble G, Silk D, eds. Artificial Nutrition Support in Clinical Practice London: Edward Arnold, 1995: 333–42. [Google Scholar]
- 228. Carpentier YA, Thonnart N. Parameters for evaluation of lipid metabolism. JPEN J Parenter Enteral Nutr 1987; 11 (Suppl 5): 104S–108S. [DOI] [PubMed] [Google Scholar]
- 229. Nordenstrom J, Thorne A, Lindholm M. Accuracy of plasma turbidity measurement for determining fat intolerance during total parenteral nutrition. Clin Nutr 1990; 9: 172–5. [DOI] [PubMed] [Google Scholar]
- 230. Rigaud D, Serog P, Legrand A, Cerf M, Apfelbaum M, Bonfils S. Quantification of lipoprotein X and its relationship to plasma lipid profile during different types of parenteral nutrition. JPEN J Parenter Enteral Nutr 1984; 8: 529–34. [DOI] [PubMed] [Google Scholar]
- 231. Hajri T, Ferezou J, Lutton C. Effects of intravenous infusions of commercial fat emulsions (Intralipid 10 or 20%) on rat plasma lipoproteins: phospholipids in excess are the main precursors of lipoprotein-X-like particles. Biochem Biophys Acta 1990; 1047: 121–30. [DOI] [PubMed] [Google Scholar]
- 232. Untracht SH. Intravascular metabolism of an artificial transporter of triacylglycerols. Alterations of serum lipoproteins resulting from total parenteral nutrition with Intralipid. Biochem Biophys Acta 1982; 711: 176–92. [DOI] [PubMed] [Google Scholar]
- 233. Messing B, Peynet J, Poupon J et al. Effect of fat-emulsion phospholipids on serum lipoprotein profile during 1 mo of cyclic total parenteral nutrition. Am J Clin Nutr 1990; 52: 1094–100. [DOI] [PubMed] [Google Scholar]
- 234. Grafmeyer D, Bondon M, Manchon M, Levillain P. The influence of bilirubin, haemolysis and turbidity on 20 analytical tests performed on automatic analysers. Results of an interlaboratory study. Ear J Clin Chem Clin Biochem 1995; 33: 31–52. [DOI] [PubMed] [Google Scholar]
