Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Mar 15;499(Pt 3):787–808. doi: 10.1113/jphysiol.1997.sp021969

A surface potential change in the membranes of frog skeletal muscle is associated with excitation-contraction coupling.

D S Jong 1, K Stroffekova 1, J A Heiny 1
PMCID: PMC1159295  PMID: 9130173

Abstract

1. Voltage changes and intramembrane charge movements in the transverse tubule membranes (T-system) of frog fast twitch muscle fibres were compared using the potentiometric dye WW-375 and a Vaseline-gap voltage clamp. As shown previously, the potentiometric dye reports a dynamic surface potential change that occurs on the myoplasmic face of the T-system membranes when the macroscopic potential applied across the surface membrane exceeds the mechanical threshold (about -60 mV). 2. The voltage dependence of the extra surface potential change and charge movement were found to be similar. Both activated with a sigmoid voltage dependence centred around -35 to -40 mV, and saturated at voltages above 0 mV. Both processes inactivated upon sustained depolarization, with a mid-point for inactivation of -40 mV. 3. Pharmacological agents which alter charge movement and excitation-contraction (E-C) coupling altered the non-linear surface potential change in a parallel manner. Perchlorate, which potentiates charge movement and E-C coupling, slowed the activation and deactivation of both charge movement and the non-linear surface potential change at voltages above -40 mV, and shifted the voltage dependence of both processes by 13 14 mV to more negative voltages. Dantrolene, which depresses charge movement and E-C coupling, shifted the voltage dependence of both processes to more positive voltages. Nifedipine, which suppresses charge movement and E-C coupling, reduced the magnitude of both charge movement and the non-linear surface potential change. 4. The non-linear surface potential change remained after the sarcoplasmic reticulum (SR) was depleted of Ca2+, suggesting that it is not a consequence of Ca2+ release. 5. These results suggest that the non-linear surface potential change is closely associated with movements of the voltage sensor (dihydropyridine (DHP) receptor) that control E-C coupling and/or signal transduction across the triadic junction. We propose that the movement of charged intramembrane domains of the DHP receptor which generate charge movement drive a subsequent movement of charged intracellular molecular domains that move within about 1 nm of the T-system membrane to generate a measurable change in surface charge. For example, the postulated mobile surface charges could be on an intracellular domain of the voltage sensor or closely associated protein, or could be a charged molecular domain of a protein that associates/dissociates with T-system membrane or DHP receptor during E-C coupling.

Full text

PDF
787

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Chandler W. K., Rakowski R. F. Charge movement and mechanical repriming in skeletal muscle. J Physiol. 1976 Jan;254(2):361–388. doi: 10.1113/jphysiol.1976.sp011236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashcroft F. M., Heiny J. A., Vergara J. Inward rectification in the transverse tubular system of frog skeletal muscle studied with potentiometric dyes. J Physiol. 1985 Feb;359:269–291. doi: 10.1113/jphysiol.1985.sp015585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Block B. A., Imagawa T., Campbell K. P., Franzini-Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988 Dec;107(6 Pt 2):2587–2600. doi: 10.1083/jcb.107.6.2587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brum G., Fitts R., Pizarro G., Ríos E. Voltage sensors of the frog skeletal muscle membrane require calcium to function in excitation-contraction coupling. J Physiol. 1988 Apr;398:475–505. doi: 10.1113/jphysiol.1988.sp017053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brum G., Rios E. Intramembrane charge movement in frog skeletal muscle fibres. Properties of charge 2. J Physiol. 1987 Jun;387:489–517. doi: 10.1113/jphysiol.1987.sp016586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chandler W. K., Hui C. S. Membrane capacitance in frog cut twitch fibers mounted in a double vaseline-gap chamber. J Gen Physiol. 1990 Aug;96(2):225–256. doi: 10.1085/jgp.96.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chandler W. K., Rakowski R. F., Schneider M. F. A non-linear voltage dependent charge movement in frog skeletal muscle. J Physiol. 1976 Jan;254(2):245–283. doi: 10.1113/jphysiol.1976.sp011232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ellis K. O., Carpenter J. F. Studies on the mechanism of action of dantrolene sodium. A skeletal muscle relaxant. Naunyn Schmiedebergs Arch Pharmacol. 1972;275(1):83–94. doi: 10.1007/BF00505069. [DOI] [PubMed] [Google Scholar]
  9. Feldmeyer D., Zöllner P., Pohl B., Melzer W. Calcium current reactivation after flash photolysis of nifedipine in skeletal muscle fibres of the frog. J Physiol. 1995 Aug 15;487(1):51–56. doi: 10.1113/jphysiol.1995.sp020860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. González A., Ríos E. Perchlorate enhances transmission in skeletal muscle excitation-contraction coupling. J Gen Physiol. 1993 Sep;102(3):373–421. doi: 10.1085/jgp.102.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., HOROWICZ P. Potassium contractures in single muscle fibres. J Physiol. 1960 Sep;153:386–403. doi: 10.1113/jphysiol.1960.sp006541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heiny J. A., Jong D. S. A nonlinear electrostatic potential change in the T-system of skeletal muscle detected under passive recording conditions using potentiometric dyes. J Gen Physiol. 1990 Jan;95(1):147–175. doi: 10.1085/jgp.95.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heiny J. A., Valle J. R., Bryant S. H. Optical evidence for a chloride conductance in the T-system of frog skeletal muscle. Pflugers Arch. 1990 May;416(3):288–295. doi: 10.1007/BF00392065. [DOI] [PubMed] [Google Scholar]
  14. Hille B., Campbell D. T. An improved vaseline gap voltage clamp for skeletal muscle fibers. J Gen Physiol. 1976 Mar;67(3):265–293. doi: 10.1085/jgp.67.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang C. L. 'Off' tails of intramembrane charge movements in frog skeletal muscle in perchlorate-containing solutions. J Physiol. 1987 Mar;384:491–509. doi: 10.1113/jphysiol.1987.sp016466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Huang C. L. Kinetic separation of charge movement components in intact frog skeletal muscle. J Physiol. 1994 Dec 1;481(Pt 2):357–369. doi: 10.1113/jphysiol.1994.sp020445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huang C. L. Voltage-dependent block of charge movement components by nifedipine in frog skeletal muscle. J Gen Physiol. 1990 Sep;96(3):535–557. doi: 10.1085/jgp.96.3.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hui C. S. Pharmacological studies of charge movement in frog skeletal muscle. J Physiol. 1983 Apr;337:509–529. doi: 10.1113/jphysiol.1983.sp014639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jong D. S., Pape P. C., Chandler W. K. Effect of sarcoplasmic reticulum calcium depletion on intramembranous charge movement in frog cut muscle fibers. J Gen Physiol. 1995 Oct;106(4):659–704. doi: 10.1085/jgp.106.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kovács L., Schneider M. F. Increased optical transparency associated with excitation--contraction coupling in voltage-clamped cut skeletal muscle fibres. Nature. 1977 Feb 10;265(5594):556–560. doi: 10.1038/265556a0. [DOI] [PubMed] [Google Scholar]
  21. Kovács L., Schümperli R. A., Szücs G. Comparison of birefringence signals and calcium transients in voltage-clamped cut skeletal muscle fibres of the frog. J Physiol. 1983 Aug;341:579–593. doi: 10.1113/jphysiol.1983.sp014825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Melzer W., Herrmann-Frank A., Lüttgau H. C. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta. 1995 May 8;1241(1):59–116. doi: 10.1016/0304-4157(94)00014-5. [DOI] [PubMed] [Google Scholar]
  23. Morgan K. G., Bryant S. H. The mechanism of action of dantrolene sodium. J Pharmacol Exp Ther. 1977 Apr;201(1):138–147. [PubMed] [Google Scholar]
  24. Pape P. C., Jong D. S., Chandler W. K. Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol. 1995 Aug;106(2):259–336. doi: 10.1085/jgp.106.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  26. Pizarro G., Csernoch L., Uribe I., Rodríguez M., Ríos E. The relationship between Q gamma and Ca release from the sarcoplasmic reticulum in skeletal muscle. J Gen Physiol. 1991 May;97(5):913–947. doi: 10.1085/jgp.97.5.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rakowski R. F. Immobilization of membrane charge in frog skeletal muscle by prolonged depolarization. J Physiol. 1981 Aug;317:129–148. doi: 10.1113/jphysiol.1981.sp013817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rios E., Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature. 1987 Feb 19;325(6106):717–720. doi: 10.1038/325717a0. [DOI] [PubMed] [Google Scholar]
  29. Ríos E., Pizarro G. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev. 1991 Jul;71(3):849–908. doi: 10.1152/physrev.1991.71.3.849. [DOI] [PubMed] [Google Scholar]
  30. Shirokova N., Pizarro G., Ríos E. A damped oscillation in the intramembranous charge movement and calcium release flux of frog skeletal muscle fibers. J Gen Physiol. 1994 Sep;104(3):449–476. doi: 10.1085/jgp.104.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tanabe T., Beam K. G., Powell J. A., Numa S. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature. 1988 Nov 10;336(6195):134–139. doi: 10.1038/336134a0. [DOI] [PubMed] [Google Scholar]
  32. Yano M., el-Hayek R., Ikemoto N. Effects of perchlorate on depolarization-induced conformational changes in the junctional foot protein and Ca2+ release from sarcoplasmic reticulum. Biochemistry. 1995 Oct 3;34(39):12584–12589. doi: 10.1021/bi00039a013. [DOI] [PubMed] [Google Scholar]
  33. el-Hayek R., Parness J., Valdivia H. H., Coronado R., Hogan K. Dantrolene and azumolene inhibit [3H]PN200-110 binding to porcine skeletal muscle dihydropyridine receptors. Biochem Biophys Res Commun. 1992 Sep 16;187(2):894–900. doi: 10.1016/0006-291x(92)91281-t. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES