Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Apr 1;323(Pt 1):197–206. doi: 10.1042/bj3230197

An apparent association between glycosylphosphatidylinositol-anchored proteins and a sphingolipid in Tetrahymena mimbres.

X Zhang 1, G A Thompson Jr 1
PMCID: PMC1218295  PMID: 9173882

Abstract

Sphingolipids are thought to stabilize glycosylphosphatidylinositol (GPI)-anchored protein-rich membrane domains of yeast and polarized higher animal cells during the processing and targeting of these proteins to the plasma membrane. A widely used criterion for identifying the stable sphingolipid- and GPI-anchored protein-enriched membrane domains is the resistance of these lipid-modified proteins to solubilization by the detergent Triton X-100 (TX-100) at low temperature. Surprisingly, there have been no reports of sphingolipid/GPI-anchored protein association in protozoans, despite the fact that these cells contain considerably higher levels of GPI-anchored proteins than does any other organism. We report here the presence in Tetrahymena mimbres of a significant pool of GPI-anchored proteins which resisted extraction by 1% TX-100 at 4 degrees C but not at 37 degrees C. Of the total cellular complement of GPI-anchored proteins, which together accounted for more than 2% of whole-cell protein and were especially enriched in surface membranes, 10% of the major 63kDa component (gpi63) and 23% of a somewhat less abundant component (gpi23) were insoluble in TX-100 at 4 degrees C. A substantial proportion of the cell's only abundant sphingolipid, ceramideaminoethylphosphonate (CAEP), was also insoluble in 1% TX-100 at 4 degrees C. Radiolabelling studies involving [3H]leucine incorporation into proteins and [3H]palmitic acid incorporation into lipids revealed that the TX-100-resistant gpi63, gpi23 and CAEP molecules were all metabolically distinct from their TX-100-soluble counterparts in other compartments of the cell. The presence of detergent-resistant sphingolipid/GPI-anchored protein domains in non-polarized ciliate and trypanosomatid cells was probably obscured in previous studies by the profusion of accompanying detergent-soluble molecules.

Full Text

The Full Text of this article is available as a PDF (331.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Banting G., Benting J., Lingelbach K. A minimalist view of the secretory pathway in Plasmodium falciparum. Trends Cell Biol. 1995 Sep;5(9):340–343. doi: 10.1016/s0962-8924(00)89060-1. [DOI] [PubMed] [Google Scholar]
  3. Boggs J. M. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function. Biochim Biophys Acta. 1987 Oct 5;906(3):353–404. doi: 10.1016/0304-4157(87)90017-7. [DOI] [PubMed] [Google Scholar]
  4. Bouvier J., Etges R. J., Bordier C. Identification and purification of membrane and soluble forms of the major surface protein of Leishmania promastigotes. J Biol Chem. 1985 Dec 15;260(29):15504–15509. [PubMed] [Google Scholar]
  5. Brown D. A., Crise B., Rose J. K. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science. 1989 Sep 29;245(4925):1499–1501. doi: 10.1126/science.2571189. [DOI] [PubMed] [Google Scholar]
  6. Brown D. A. Interactions between GPI-anchored proteins and membrane lipids. Trends Cell Biol. 1992 Nov;2(11):338–343. [PubMed] [Google Scholar]
  7. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  8. Bülow R., Overath P., Davoust J. Rapid lateral diffusion of the variant surface glycoprotein in the coat of Trypanosoma brucei. Biochemistry. 1988 Apr 5;27(7):2384–2388. doi: 10.1021/bi00407a020. [DOI] [PubMed] [Google Scholar]
  9. Cerneus D. P., Ueffing E., Posthuma G., Strous G. J., van der Ende A. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. J Biol Chem. 1993 Feb 15;268(5):3150–3155. [PubMed] [Google Scholar]
  10. Chen R., Udenfriend S., Prince G. M., Maxwell S. E., Ramalingam S., Gerber L. D., Knez J., Medof M. E. A defect in glycosylphosphatidylinositol (GPI) transamidase activity in mutant K cells is responsible for their inability to display GPI surface proteins. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2280–2284. doi: 10.1073/pnas.93.6.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cross G. A. Glycolipid anchoring of plasma membrane proteins. Annu Rev Cell Biol. 1990;6:1–39. doi: 10.1146/annurev.cb.06.110190.000245. [DOI] [PubMed] [Google Scholar]
  12. Das S., Traynor-Kaplan A., Reiner D. S., Meng T. C., Gillin F. D. A surface antigen of Giardia lamblia with a glycosylphosphatidylinositol anchor. J Biol Chem. 1991 Nov 5;266(31):21318–21325. [PubMed] [Google Scholar]
  13. Englund P. T. The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu Rev Biochem. 1993;62:121–138. doi: 10.1146/annurev.bi.62.070193.001005. [DOI] [PubMed] [Google Scholar]
  14. Fankhauser C., Homans S. W., Thomas-Oates J. E., McConville M. J., Desponds C., Conzelmann A., Ferguson M. A. Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae. J Biol Chem. 1993 Dec 15;268(35):26365–26374. [PubMed] [Google Scholar]
  15. Ferguson M. A., Low M. G., Cross G. A. Glycosyl-sn-1,2-dimyristylphosphatidylinositol is covalently linked to Trypanosoma brucei variant surface glycoprotein. J Biol Chem. 1985 Nov 25;260(27):14547–14555. [PubMed] [Google Scholar]
  16. Fukuoka S., Freedman S. D., Yu H., Sukhatme V. P., Scheele G. A. GP-2/THP gene family encodes self-binding glycosylphosphatidylinositol-anchored proteins in apical secretory compartments of pancreas and kidney. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1189–1193. doi: 10.1073/pnas.89.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fukushima H., Martin C. E., Iida H., Kitajima Y., Thompson G. A., Jr Changes in membrane lipid composition during temperature adaptation by a thermotolerant strain of Tetrahymena pyriformis. Biochim Biophys Acta. 1976 Apr 22;431(1):165–179. doi: 10.1016/0005-2760(76)90271-x. [DOI] [PubMed] [Google Scholar]
  18. Futerman A. H. Inhibition of sphingolipid synthesis: effects on glycosphingolipid-GPI-anchored protein microdomains. Trends Cell Biol. 1995 Oct;5(10):377–380. doi: 10.1016/s0962-8924(00)89078-9. [DOI] [PubMed] [Google Scholar]
  19. HAMBURGER K., ZEUTHEN E. Synchronous divisions in Tetrahymena pyriformis as studied in an inorganic medium; the effect of 2,4-dinitrophenol. Exp Cell Res. 1957 Dec;13(3):443–453. doi: 10.1016/0014-4827(57)90074-5. [DOI] [PubMed] [Google Scholar]
  20. Hanada K., Nishijima M., Akamatsu Y., Pagano R. E. Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J Biol Chem. 1995 Mar 17;270(11):6254–6260. doi: 10.1074/jbc.270.11.6254. [DOI] [PubMed] [Google Scholar]
  21. Horvath A., Sütterlin C., Manning-Krieg U., Movva N. R., Riezman H. Ceramide synthesis enhances transport of GPI-anchored proteins to the Golgi apparatus in yeast. EMBO J. 1994 Aug 15;13(16):3687–3695. doi: 10.1002/j.1460-2075.1994.tb06678.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huang J. H., Getty R. R., Chisari F. V., Fowler P., Greenspan N. S., Tykocinski M. L. Protein transfer of preformed MHC-peptide complexes sensitizes target cells to T cell cytolysis. Immunity. 1994 Oct;1(7):607–613. doi: 10.1016/1074-7613(94)90050-7. [DOI] [PubMed] [Google Scholar]
  23. Incardona J. P., Rosenberry T. L. Replacement of the glycoinositol phospholipid anchor of Drosophila acetylcholinesterase with a transmembrane domain does not alter sorting in neurons and epithelia but results in behavioral defects. Mol Biol Cell. 1996 Apr;7(4):613–630. doi: 10.1091/mbc.7.4.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kaya K., Ramesha C. S., Thompson G. A., Jr On the formation of alpha-hydroxy fatty acids. Evidence for a direct hydroxylation of nonhydroxy fatty acid-containing sphingolipids. J Biol Chem. 1984 Mar 25;259(6):3548–3553. [PubMed] [Google Scholar]
  25. Kaya K., Ramesha C. S., Thompson G. A., Jr Temperature-induced changes in the hydroxy and non-hydroxy fatty acid-containing sphingolipids abundant in the surface membrane of Tetrahymena pyriformis NT-1. J Lipid Res. 1984 Jan;25(1):68–74. [PubMed] [Google Scholar]
  26. Kitajima Y., Thompson G. A., Jr Tetrahymena strives to maintain the fluidity interrelationships of all its membranes constant. Electron microscope evidence. J Cell Biol. 1977 Mar;72(3):744–755. doi: 10.1083/jcb.72.3.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ko Y. G., Hung C. Y., Thompson G. A., Jr Temperature regulation of the Tetrahymena mimbres glycosylphosphatidylinositol-anchored protein lipid composition. Biochem J. 1995 Apr 1;307(Pt 1):115–121. doi: 10.1042/bj3070115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ko Y. G., Thompson G. A., Jr Immobilization antigens from Tetrahymena thermophila are glycosyl-phosphatidylinositol-linked proteins. J Protozool. 1992 Nov-Dec;39(6):719–723. doi: 10.1111/j.1550-7408.1992.tb04454.x. [DOI] [PubMed] [Google Scholar]
  29. Ko Y. G., Thompson G. A., Jr Purification of glycosylphosphatidylinositol-anchored proteins by modified triton X-114 partitioning and preparative gel electrophoresis. Anal Biochem. 1995 Jan 1;224(1):166–172. doi: 10.1006/abio.1995.1024. [DOI] [PubMed] [Google Scholar]
  30. Kurz S., Tiedtke A. The Golgi apparatus of Tetrahymena thermophila. J Eukaryot Microbiol. 1993 Jan-Feb;40(1):10–13. doi: 10.1111/j.1550-7408.1993.tb04874.x. [DOI] [PubMed] [Google Scholar]
  31. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  32. Low M. G. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta. 1989 Dec 6;988(3):427–454. doi: 10.1016/0304-4157(89)90014-2. [DOI] [PubMed] [Google Scholar]
  33. Mays R. W., Siemers K. A., Fritz B. A., Lowe A. W., van Meer G., Nelson W. J. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. J Cell Biol. 1995 Sep;130(5):1105–1115. doi: 10.1083/jcb.130.5.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Melkonian K. A., Chu T., Tortorella L. B., Brown D. A. Characterization of proteins in detergent-resistant membrane complexes from Madin-Darby canine kidney epithelial cells. Biochemistry. 1995 Dec 12;34(49):16161–16170. doi: 10.1021/bi00049a031. [DOI] [PubMed] [Google Scholar]
  36. Nozawa Y., Thompson G. A., Jr Studies of membrane formation in Tetrahymena pyriformis. II. Isolation and lipid analysis of cell fractions. J Cell Biol. 1971 Jun;49(3):712–721. doi: 10.1083/jcb.49.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ramesha C. S., Thompson G. A., Jr Changes in the lipid composition and physical properties of Tetrahymena ciliary membranes following low-temperature acclimation. Biochemistry. 1982 Jul 20;21(15):3612–3617. doi: 10.1021/bi00258a013. [DOI] [PubMed] [Google Scholar]
  38. Rodriguez-Boulan E., Nelson W. J. Morphogenesis of the polarized epithelial cell phenotype. Science. 1989 Aug 18;245(4919):718–725. doi: 10.1126/science.2672330. [DOI] [PubMed] [Google Scholar]
  39. Rosen C. L., Lisanti M. P., Salzer J. L. Expression of unique sets of GPI-linked proteins by different primary neurons in vitro. J Cell Biol. 1992 May;117(3):617–627. doi: 10.1083/jcb.117.3.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schell D., Evers R., Preis D., Ziegelbauer K., Kiefer H., Lottspeich F., Cornelissen A. W., Overath P. A transferrin-binding protein of Trypanosoma brucei is encoded by one of the genes in the variant surface glycoprotein gene expression site. EMBO J. 1991 May;10(5):1061–1066. doi: 10.1002/j.1460-2075.1991.tb08045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  42. Stevens V. L. Biosynthesis of glycosylphosphatidylinositol membrane anchors. Biochem J. 1995 Sep 1;310(Pt 2):361–370. doi: 10.1042/bj3100361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Steverding D., Stierhof Y. D., Fuchs H., Tauber R., Overath P. Transferrin-binding protein complex is the receptor for transferrin uptake in Trypanosoma brucei. J Cell Biol. 1995 Dec;131(5):1173–1182. doi: 10.1083/jcb.131.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Subbaiah P. V., Thompson G. A., Jr Studies of membrane formation in Tetrahymena pyriformis. The biosynthesis of proteins and their assembly into membranes of growing cells. J Biol Chem. 1974 Feb 25;249(4):1302–1310. [PubMed] [Google Scholar]
  45. Thompson G. A., Jr Studies of membrane formation in Tetrahymena pyriformis. I. Rates of phospholipid biosynthesis. Biochemistry. 1967 Jul;6(7):2015–2022. doi: 10.1021/bi00859a020. [DOI] [PubMed] [Google Scholar]
  46. Thompson T. E., Tillack T. W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
  47. Udenfriend S., Kodukula K. How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem. 1995;64:563–591. doi: 10.1146/annurev.bi.64.070195.003023. [DOI] [PubMed] [Google Scholar]
  48. Williams J. T., Juo P. S. Release and activation of a particulate bound acid phosphatase from Tetrahymena pyriformis. Biochim Biophys Acta. 1976 Jan 23;422(1):120–126. doi: 10.1016/0005-2744(76)90013-9. [DOI] [PubMed] [Google Scholar]
  49. Zurzolo C., van't Hof W., van Meer G., Rodriguez-Boulan E. VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol-anchored proteins in epithelial cells. EMBO J. 1994 Jan 1;13(1):42–53. doi: 10.1002/j.1460-2075.1994.tb06233.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. van der Bijl P., Lopes-Cardozo M., van Meer G. Sorting of newly synthesized galactosphingolipids to the two surface domains of epithelial cells. J Cell Biol. 1996 Mar;132(5):813–821. doi: 10.1083/jcb.132.5.813. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES