Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1997 Aug;151(2):557–563.

Nitric oxide mediates angiogenesis induced in vivo by platelet-activating factor and tumor necrosis factor-alpha.

G Montrucchio 1, E Lupia 1, A de Martino 1, E Battaglia 1, M Arese 1, A Tizzani 1, F Bussolino 1, G Camussi 1
PMCID: PMC1858000  PMID: 9250168

Abstract

We evaluated the role of an endogenous production of nitric oxide (NO) in the in vitro migration of endothelial cells and in the in vivo angiogenic response elicited by platelet-activating factor (PAF), tumor necrosis factor-alpha (TNF), and basic fibroblast growth factor (bFGF). The NO synthase inhibitor, N omega-nitro-L-arginine-methyl ester (L-NAME), but not its enantiomer D-NAME, prevented chemotaxis of endothelial cells induced in vitro by PAF and by TNF. The motogenic activity of TNF was also inhibited by WEB 2170, a specific PAF-receptor antagonist. In contrast, chemotaxis induced by bFGF was not prevented by L-NAME or by WEB 2170. Angiogenesis was studied in vivo in a murine model in which Matrigel was used as a vehicle for the delivery of mediators. In this model, the angiogenesis induced by PAF and TNF was inhibited by WEB 2170 and L-NAME but not by D-NAME. In contrast, angiogenesis induced by bFGF was not affected by L-NAME or by WEB 2170. TNF, but not bFGF, induced PAF synthesis within Matrigel. These results suggest that NO mediates the angiogenesis induced by PAF as well as that induced by TNF, which is dependent on the production of PAF. In contrast, the angiogenic effect of bFGF appears to be both PAF and NO independent.

Full text

PDF
557

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Brunelleschi S., Ceni E., Giotti A., Fantozzi R. Tachykinins stimulate lyso-PAF:acetyl-CoA acetyltransferase activity in neutrophils. Eur J Pharmacol. 1990 Sep 21;186(2-3):367–368. doi: 10.1016/0014-2999(90)90463-g. [DOI] [PubMed] [Google Scholar]
  3. Bussolino F., Camussi G., Aglietta M., Braquet P., Bosia A., Pescarmona G., Sanavio F., D'Urso N., Marchisio P. C. Human endothelial cells are target for platelet-activating factor. I. Platelet-activating factor induces changes in cytoskeleton structures. J Immunol. 1987 Oct 1;139(7):2439–2446. [PubMed] [Google Scholar]
  4. Bussolino F., Gremo F., Tetta C., Pescarmona G. P., Camussi G. Production of platelet-activating factor by chick retina. J Biol Chem. 1986 Dec 15;261(35):16502–16508. [PubMed] [Google Scholar]
  5. Camussi G., Aglietta M., Malavasi F., Tetta C., Piacibello W., Sanavio F., Bussolino F. The release of platelet-activating factor from human endothelial cells in culture. J Immunol. 1983 Nov;131(5):2397–2403. [PubMed] [Google Scholar]
  6. Camussi G., Montrucchio G., Lupia E., De Martino A., Perona L., Arese M., Vercellone A., Toniolo A., Bussolino F. Platelet-activating factor directly stimulates in vitro migration of endothelial cells and promotes in vivo angiogenesis by a heparin-dependent mechanism. J Immunol. 1995 Jun 15;154(12):6492–6501. [PubMed] [Google Scholar]
  7. Camussi G., Montrucchio G., Lupia E., Soldi R., Comoglio P. M., Bussolino F. Angiogenesis induced in vivo by hepatocyte growth factor is mediated by platelet-activating factor synthesis from macrophages. J Immunol. 1997 Feb 1;158(3):1302–1309. [PubMed] [Google Scholar]
  8. Camussi G., Turello E., Bussolino F., Baglioni C. Tumor necrosis factor alters cytoskeletal organization and barrier function of endothelial cells. Int Arch Allergy Appl Immunol. 1991;96(1):84–91. doi: 10.1159/000235539. [DOI] [PubMed] [Google Scholar]
  9. Caplan M. S., Hedlund E., Hill N., MacKendrick W. The role of endogenous nitric oxide and platelet-activating factor in hypoxia-induced intestinal injury in rats. Gastroenterology. 1994 Feb;106(2):346–352. doi: 10.1016/0016-5085(94)90591-6. [DOI] [PubMed] [Google Scholar]
  10. Colville-Nash P. R., Scott D. L. Angiogenesis and rheumatoid arthritis: pathogenic and therapeutic implications. Ann Rheum Dis. 1992 Jul;51(7):919–925. doi: 10.1136/ard.51.7.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dejana E., Languino L. R., Polentarutti N., Balconi G., Ryckewaert J. J., Larrieu M. J., Donati M. B., Mantovani A., Marguerie G. Interaction between fibrinogen and cultured endothelial cells. Induction of migration and specific binding. J Clin Invest. 1985 Jan;75(1):11–18. doi: 10.1172/JCI111661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eneström S., Hed J., Hultman P. Detection of immune deposits in glomeruli: a comparative study of paraffin-embedded, enzyme-treated sections and cryostat sections as substrates in immunofluorescence. J Immunol Methods. 1980;37(3-4):343–351. doi: 10.1016/0022-1759(80)90320-8. [DOI] [PubMed] [Google Scholar]
  13. Folkman J., Klagsbrun M. Angiogenic factors. Science. 1987 Jan 23;235(4787):442–447. doi: 10.1126/science.2432664. [DOI] [PubMed] [Google Scholar]
  14. Folkman J. Proceedings: Tumor angiogenesis factor. Cancer Res. 1974 Aug;34(8):2109–2113. [PubMed] [Google Scholar]
  15. Folkman J., Shing Y. Angiogenesis. J Biol Chem. 1992 Jun 5;267(16):10931–10934. [PubMed] [Google Scholar]
  16. Folkman J., Szabo S., Stovroff M., McNeil P., Li W., Shing Y. Duodenal ulcer. Discovery of a new mechanism and development of angiogenic therapy that accelerates healing. Ann Surg. 1991 Oct;214(4):414–427. doi: 10.1097/00000658-199110000-00006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fràter-Schröder M., Risau W., Hallmann R., Gautschi P., Böhlen P. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5277–5281. doi: 10.1073/pnas.84.15.5277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heuer H. O., Casals-Stenzel J., Muacevic G., Weber K. H. Pharmacologic activity of bepafant (WEB 2170), a new and selective hetrazepinoic antagonist of platelet activating factor. J Pharmacol Exp Ther. 1990 Dec;255(3):962–968. [PubMed] [Google Scholar]
  19. Hunt T. K., Knighton D. R., Thakral K. K., Goodson W. H., 3rd, Andrews W. S. Studies on inflammation and wound healing: angiogenesis and collagen synthesis stimulated in vivo by resident and activated wound macrophages. Surgery. 1984 Jul;96(1):48–54. [PubMed] [Google Scholar]
  20. Ignarro L. J. Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension. 1990 Nov;16(5):477–483. doi: 10.1161/01.hyp.16.5.477. [DOI] [PubMed] [Google Scholar]
  21. Kibbey M. C., Grant D. S., Kleinman H. K. Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J Natl Cancer Inst. 1992 Nov 4;84(21):1633–1638. doi: 10.1093/jnci/84.21.1633. [DOI] [PubMed] [Google Scholar]
  22. Kostyk S. K., Kourembanas S., Wheeler E. L., Medeiros D., McQuillan L. P., D'Amore P. A., Braunhut S. J. Basic fibroblast growth factor increases nitric oxide synthase production in bovine endothelial cells. Am J Physiol. 1995 Nov;269(5 Pt 2):H1583–H1589. doi: 10.1152/ajpheart.1995.269.5.H1583. [DOI] [PubMed] [Google Scholar]
  23. Lamas S., Michel T., Brenner B. M., Marsden P. A. Nitric oxide synthesis in endothelial cells: evidence for a pathway inducible by TNF-alpha. Am J Physiol. 1991 Oct;261(4 Pt 1):C634–C641. doi: 10.1152/ajpcell.1991.261.4.C634. [DOI] [PubMed] [Google Scholar]
  24. Leibovich S. J., Polverini P. J., Fong T. W., Harlow L. A., Koch A. E. Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4190–4194. doi: 10.1073/pnas.91.10.4190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lerner R., Lindström P., Palmblad J. Platelet activating factor and leukotriene B4 induce hyperpolarization of human endothelial cells but depolarization of neutrophils. Biochem Biophys Res Commun. 1988 Jun 16;153(2):805–810. doi: 10.1016/s0006-291x(88)81167-7. [DOI] [PubMed] [Google Scholar]
  26. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  27. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  28. Montesano R. 1992 Mack Forster Award Lecture. Review. Regulation of angiogenesis in vitro. Eur J Clin Invest. 1992 Aug;22(8):504–515. doi: 10.1111/j.1365-2362.1992.tb01498.x. [DOI] [PubMed] [Google Scholar]
  29. Montrucchio G., Lupia E., Battaglia E., Passerini G., Bussolino F., Emanuelli G., Camussi G. Tumor necrosis factor alpha-induced angiogenesis depends on in situ platelet-activating factor biosynthesis. J Exp Med. 1994 Jul 1;180(1):377–382. doi: 10.1084/jem.180.1.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nakamura M., Honda Z., Izumi T., Sakanaka C., Mutoh H., Minami M., Bito H., Seyama Y., Matsumoto T., Noma M. Molecular cloning and expression of platelet-activating factor receptor from human leukocytes. J Biol Chem. 1991 Oct 25;266(30):20400–20405. [PubMed] [Google Scholar]
  31. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  32. Nathan C., Xie Q. W. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23;78(6):915–918. doi: 10.1016/0092-8674(94)90266-6. [DOI] [PubMed] [Google Scholar]
  33. Niu X. F., Smith C. W., Kubes P. Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circ Res. 1994 Jun;74(6):1133–1140. doi: 10.1161/01.res.74.6.1133. [DOI] [PubMed] [Google Scholar]
  34. Pandey A., Shao H., Marks R. M., Polverini P. J., Dixit V. M. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha-induced angiogenesis. Science. 1995 Apr 28;268(5210):567–569. doi: 10.1126/science.7536959. [DOI] [PubMed] [Google Scholar]
  35. Passaniti A., Taylor R. M., Pili R., Guo Y., Long P. V., Haney J. A., Pauly R. R., Grant D. S., Martin G. R. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest. 1992 Oct;67(4):519–528. [PubMed] [Google Scholar]
  36. Pinckard R. N., Woodard D. S., Showell H. J., Conklyn M. J., Novak M. J., McManus L. M. Structural and (patho)physiological diversity of PAF. Clin Rev Allergy. 1994 Winter;12(4):329–359. doi: 10.1007/BF02802299. [DOI] [PubMed] [Google Scholar]
  37. Santos O. F., Nigam S. K. HGF-induced tubulogenesis and branching of epithelial cells is modulated by extracellular matrix and TGF-beta. Dev Biol. 1993 Dec;160(2):293–302. doi: 10.1006/dbio.1993.1308. [DOI] [PubMed] [Google Scholar]
  38. Sarma V., Wolf F. W., Marks R. M., Shows T. B., Dixit V. M. Cloning of a novel tumor necrosis factor-alpha-inducible primary response gene that is differentially expressed in development and capillary tube-like formation in vitro. J Immunol. 1992 May 15;148(10):3302–3312. [PubMed] [Google Scholar]
  39. Szabó C., Wu C. C., Mitchell J. A., Gross S. S., Thiemermann C., Vane J. R. Platelet-activating factor contributes to the induction of nitric oxide synthase by bacterial lipopolysaccharide. Circ Res. 1993 Dec;73(6):991–999. doi: 10.1161/01.res.73.6.991. [DOI] [PubMed] [Google Scholar]
  40. Taub M., Wang Y., Szczesny T. M., Kleinman H. K. Epidermal growth factor or transforming growth factor alpha is required for kidney tubulogenesis in matrigel cultures in serum-free medium. Proc Natl Acad Sci U S A. 1990 May;87(10):4002–4006. doi: 10.1073/pnas.87.10.4002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Teng C. M., Yu S. M., Ko F. N., Chen C. C., Wang W. C., Chen K. Y., Huang Y. L., Huang T. F. Comparison of the actions of some platelet-activating factor antagonists on platelets and aortic smooth muscles. Eur J Pharmacol. 1991 Nov 26;205(2):151–156. doi: 10.1016/0014-2999(91)90813-6. [DOI] [PubMed] [Google Scholar]
  42. Venable M. E., Zimmerman G. A., McIntyre T. M., Prescott S. M. Platelet-activating factor: a phospholipid autacoid with diverse actions. J Lipid Res. 1993 May;34(5):691–702. [PubMed] [Google Scholar]
  43. Vukicevic S., Kleinman H. K., Luyten F. P., Roberts A. B., Roche N. S., Reddi A. H. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res. 1992 Sep;202(1):1–8. doi: 10.1016/0014-4827(92)90397-q. [DOI] [PubMed] [Google Scholar]
  44. Weidner N., Semple J. P., Welch W. R., Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991 Jan 3;324(1):1–8. doi: 10.1056/NEJM199101033240101. [DOI] [PubMed] [Google Scholar]
  45. Weinstat-Saslow D., Steeg P. S. Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. FASEB J. 1994 Apr 1;8(6):401–407. doi: 10.1096/fasebj.8.6.7513289. [DOI] [PubMed] [Google Scholar]
  46. Yanagisawa-Miwa A., Uchida Y., Nakamura F., Tomaru T., Kido H., Kamijo T., Sugimoto T., Kaji K., Utsuyama M., Kurashima C. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science. 1992 Sep 4;257(5075):1401–1403. doi: 10.1126/science.1382313. [DOI] [PubMed] [Google Scholar]
  47. Ye R. D., Prossnitz E. R., Zou A. H., Cochrane C. G. Characterization of a human cDNA that encodes a functional receptor for platelet activating factor. Biochem Biophys Res Commun. 1991 Oct 15;180(1):105–111. doi: 10.1016/s0006-291x(05)81261-6. [DOI] [PubMed] [Google Scholar]
  48. Ziche M., Morbidelli L., Masini E., Amerini S., Granger H. J., Maggi C. A., Geppetti P., Ledda F. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest. 1994 Nov;94(5):2036–2044. doi: 10.1172/JCI117557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ziche M., Morbidelli L., Masini E., Granger H., Geppetti P., Ledda F. Nitric oxide promotes DNA synthesis and cyclic GMP formation in endothelial cells from postcapillary venules. Biochem Biophys Res Commun. 1993 May 14;192(3):1198–1203. doi: 10.1006/bbrc.1993.1543. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES