Skip to main content
Proceedings of the Royal Society B: Biological Sciences logoLink to Proceedings of the Royal Society B: Biological Sciences
. 1997 Sep 22;264(1386):1293–1302. doi: 10.1098/rspb.1997.0179

Pigmented epithelium induces complete retinal reconstitution from dispersed embryonic chick retinae in reaggregation culture.

A Rothermel 1, E Willbold 1, W J Degrip 1, P G Layer 1
PMCID: PMC1688576  PMID: 9332014

Abstract

Reaggregation of dispersed retinal cells of the chick embryo leads to histotypic retinospheroids in which the laminar organization remains incomplete: photoreceptors form rosettes which are surrounded by constituents of the other retinal layers. Here, for the first time, a complete arrangement of layers is achieved in cellular spheres (stratoids), provided that fully dispersed retinal cells are younger than embryonic day E6, and are reaggregated in the presence of a monolayer of retinal pigmented epithelium (RPE). A remarkable mechanism of stratoid formation from 1 to 15 days in vitro is revealed by the establishment of a radial Müller glia scaffold and of photoreceptors. During the first two days of reaggregation on RPE, rosettes are still observed. At this stage immunostaining with vimentin and F11 antibodies for radial Müller glia reveal a disorganized pattern. Subsequently, radial glia processes organize into long parallel fibre bundles which are arranged like spokes to stabilize the surface and centre of the stratoid. The opsin-specific antibody CERN 901 detects photoreceptors as they gradually build up an outer nuclear layer at the surface. These findings assign to the RPE a decisive role for the genesis and regeneration of a vertebrate retina.

Full Text

The Full Text of this article is available as a PDF (378.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Shaul Y., Moscona A. A. Scanning electron microscopy of aggregating embryonic neural retina cells. Exp Cell Res. 1975 Oct 1;95(1):191–204. doi: 10.1016/0014-4827(75)90624-2. [DOI] [PubMed] [Google Scholar]
  2. Campochiaro P. A. Cytokine production by retinal pigmented epithelial cells. Int Rev Cytol. 1993;146:75–82. doi: 10.1016/s0074-7696(08)60380-0. [DOI] [PubMed] [Google Scholar]
  3. Coulombre J. L., Coulombre A. J. Influence of mouse neural retina on regeneration of chick neural retina from chick embryonic pigmented epithelium. Nature. 1970 Nov 7;228(5271):559–560. doi: 10.1038/228559a0. [DOI] [PubMed] [Google Scholar]
  4. Coulombre J. L., Coulombre A. J. Regeneration of neural retina from the pigmented epithelium in the chick embryo. Dev Biol. 1965 Aug;12(1):79–92. doi: 10.1016/0012-1606(65)90022-9. [DOI] [PubMed] [Google Scholar]
  5. Ehinger B., Bergström A., Seiler M., Aramant R. B., Zucker C. L., Gustavii B., Adolph A. R. Ultrastructure of human retinal cell transplants with long survival times in rats. Exp Eye Res. 1991 Oct;53(4):447–460. doi: 10.1016/0014-4835(91)90162-8. [DOI] [PubMed] [Google Scholar]
  6. FUJITA S., HORII M. ANALYSIS OF CYTOGENESIS IN CHICK RETINA BY TRITIATED THYMIDINE AUTORADIOGRAPHY. Arch Histol Jpn. 1963 May;23:359–366. doi: 10.1679/aohc1950.23.359. [DOI] [PubMed] [Google Scholar]
  7. Hitchcock P. F., Raymond P. A. Retinal regeneration. Trends Neurosci. 1992 Mar;15(3):103–108. doi: 10.1016/0166-2236(92)90020-9. [DOI] [PubMed] [Google Scholar]
  8. Holt C. E., Bertsch T. W., Ellis H. M., Harris W. A. Cellular determination in the Xenopus retina is independent of lineage and birth date. Neuron. 1988 Mar;1(1):15–26. doi: 10.1016/0896-6273(88)90205-x. [DOI] [PubMed] [Google Scholar]
  9. Kahn A. J. An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina. Dev Biol. 1974 May;38(1):30–40. doi: 10.1016/0012-1606(74)90256-5. [DOI] [PubMed] [Google Scholar]
  10. Layer P. G., Willbold E. Embryonic chicken retinal cells can regenerate all cell layers in vitro, but ciliary pigmented cells induce their correct polarity. Cell Tissue Res. 1989 Nov;258(2):233–242. doi: 10.1007/BF00239443. [DOI] [PubMed] [Google Scholar]
  11. Layer P. G., Willbold E. Histogenesis of the avian retina in reaggregation culture: from dissociated cells to laminar neuronal networks. Int Rev Cytol. 1993;146:1–47. doi: 10.1016/s0074-7696(08)60378-2. [DOI] [PubMed] [Google Scholar]
  12. Lemmon V. Monoclonal antibodies specific for glia in the chick nervous system. Brain Res. 1985 Nov;355(1):111–120. doi: 10.1016/0165-3806(85)90010-0. [DOI] [PubMed] [Google Scholar]
  13. Liu L., Cheng S. H., Jiang L. Z., Hansmann G., Layer P. G. The pigmented epithelium sustains cell growth and tissue differentiation of chicken retinal explants in vitro. Exp Eye Res. 1988 May;46(5):801–812. doi: 10.1016/s0014-4835(88)80065-4. [DOI] [PubMed] [Google Scholar]
  14. Liu L., Halfter W., Layer P. G. Inhibition of cell proliferation by cytosine-arabinoside and its interference with spatial and temporal differentiation patterns in the chick retina. Cell Tissue Res. 1986;244(3):501–513. doi: 10.1007/BF00212527. [DOI] [PubMed] [Google Scholar]
  15. Meller K., Tetzlaff W. Scanning electron microscopic studies on the development of the chick retina. Cell Tissue Res. 1976 Jul 26;170(2):145–159. doi: 10.1007/BF00224296. [DOI] [PubMed] [Google Scholar]
  16. Prada Carmen, Puga José, Pérez-Méndez Luisa, López Rosario, Ramírez Galo. Spatial and Temporal Patterns of Neurogenesis in the Chick Retina. Eur J Neurosci. 1991 Jun;3(6):559–569. doi: 10.1111/j.1460-9568.1991.tb00843.x. [DOI] [PubMed] [Google Scholar]
  17. Prada F. A., Magalhaes M. M., Coimbra A., Genis-Galvez J. M. Morphological differentiation of the Müller cell: Golgi and electron microscopy study in the chick retina. J Morphol. 1989 Jul;201(1):11–22. doi: 10.1002/jmor.1052010103. [DOI] [PubMed] [Google Scholar]
  18. Price J., Turner D., Cepko C. Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci U S A. 1987 Jan;84(1):156–160. doi: 10.1073/pnas.84.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schalken J. J., Janssen J. J., Sanyal S., Hawkins R. K., de Grip W. J. Development and degeneration of retina in rds mutant mice: immunoassay of the rod visual pigment rhodopsin. Biochim Biophys Acta. 1990 Jan 29;1033(1):103–109. doi: 10.1016/0304-4165(90)90201-7. [DOI] [PubMed] [Google Scholar]
  20. Seiler M. J., Aramant R. B. Photoreceptor and glial markers in human embryonic retina and in human embryonic retinal transplants to rat retina. Brain Res Dev Brain Res. 1994 Jul 15;80(1-2):81–95. doi: 10.1016/0165-3806(94)90092-2. [DOI] [PubMed] [Google Scholar]
  21. Sheffield J. B., Moscona A. A. Electron microscopic analysis of aggregation of embryonic cells: the structure and differentiation of aggregates of neural retina cells. Dev Biol. 1970 Sep;23(1):36–61. doi: 10.1016/s0012-1606(70)80006-9. [DOI] [PubMed] [Google Scholar]
  22. Spoerri P. E., Ulshafer R. J., Ludwig H. C., Allen C. B., Kelley K. C. Photoreceptor cell development in vitro: influence of pigment epithelium conditioned medium on outer segment differentiation. Eur J Cell Biol. 1988 Jun;46(2):362–367. [PubMed] [Google Scholar]
  23. Stroeva O. G., Mitashov V. I. Retinal pigment epithelium: proliferation and differentiation during development and regeneration. Int Rev Cytol. 1983;83:221–293. doi: 10.1016/s0074-7696(08)61689-7. [DOI] [PubMed] [Google Scholar]
  24. Tombran-Tink J., Chader G. G., Johnson L. V. PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res. 1991 Sep;53(3):411–414. doi: 10.1016/0014-4835(91)90248-d. [DOI] [PubMed] [Google Scholar]
  25. Turner D. L., Cepko C. L. A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987 Jul 9;328(6126):131–136. doi: 10.1038/328131a0. [DOI] [PubMed] [Google Scholar]
  26. Turner J. E., Blair J. R. Newborn rat retinal cells transplanted into a retinal lesion site in adult host eyes. Brain Res. 1986 Apr;391(1):91–104. doi: 10.1016/0165-3806(86)90011-8. [DOI] [PubMed] [Google Scholar]
  27. Uga S., Smelser G. K. Electron microscopic study of the development of retinal Müllerian cells. Invest Ophthalmol. 1973 Apr;12(4):295–307. [PubMed] [Google Scholar]
  28. Vollmer G., Layer P. G., Gierer A. Reaggregation of embryonic chick retina cells: pigment epithelial cells induce a high order of stratification. Neurosci Lett. 1984 Jul 27;48(2):191–196. doi: 10.1016/0304-3940(84)90018-1. [DOI] [PubMed] [Google Scholar]
  29. Wetts R., Fraser S. E. Multipotent precursors can give rise to all major cell types of the frog retina. Science. 1988 Mar 4;239(4844):1142–1145. doi: 10.1126/science.2449732. [DOI] [PubMed] [Google Scholar]
  30. Willbold E., Brümmendorf T., Rathjen F. G., Schwarz H., Weiss B. The neural cell recognition molecule F11 is expressed on Müller cells and Schwann cells in vitro. J Hirnforsch. 1997;38(1):71–80. [PubMed] [Google Scholar]
  31. Willbold E., Mansky P., Layer P. G. Lateral and radial growth uncoupled in reaggregated retinospheroids of embryonic avian retina. Int J Dev Biol. 1996 Dec;40(6):1151–1159. [PubMed] [Google Scholar]
  32. Willbold E., Reinicke M., Lance-Jones C., Lagenaur C., Lemmon V., Layer P. G. Müller glia stabilizes cell columns during retinal development: lateral cell migration but not neuropil growth is inhibited in mixed chick-quail retinospheroids. Eur J Neurosci. 1995 Nov 1;7(11):2277–2284. doi: 10.1111/j.1460-9568.1995.tb00648.x. [DOI] [PubMed] [Google Scholar]
  33. Wolburg H., Willbold E., Layer P. G. Müller glia endfeet, a basal lamina and the polarity of retinal layers form properly in vitro only in the presence of marginal pigmented epithelium. Cell Tissue Res. 1991 Jun;264(3):437–451. doi: 10.1007/BF00319034. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the Royal Society B: Biological Sciences are provided here courtesy of The Royal Society

RESOURCES