Abstract
Essentially complete (96%) sequence-specific assignments were made for the backbone and side-chain 1H, 13C, and 15N resonances of Fusarium solani pisi cutinase, produced as a 214-residue heterologous protein in Escherichia coli, using heteronuclear NMR techniques. Three structural features were noticed during the assignment. (1) The secondary structure in solution corresponds mostly with the structure from X-ray diffraction, suggesting that both structures are globally similar. (2) The HN of Ala32 has a strongly upfield-shifted resonance at 3.97 ppm, indicative of an amide-aromatic hydrogen bond to the indole ring of Trp69 that stabilizes the N-terminal side of the parallel beta-sheet. (3) The NMR data suggest that the residues constituting the oxyanion hole are quite mobile in the free enzyme in solution, in contrast to the existence of a preformed oxyanion hole as observed in the crystal structure. Apparently, cutinase forms its oxyanion hole upon binding of the substrate like true lipases.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brzozowski A. M., Derewenda U., Derewenda Z. S., Dodson G. G., Lawson D. M., Turkenburg J. P., Bjorkling F., Huge-Jensen B., Patkar S. A., Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature. 1991 Jun 6;351(6326):491–494. doi: 10.1038/351491a0. [DOI] [PubMed] [Google Scholar]
- Burley S. K., Petsko G. A. Amino-aromatic interactions in proteins. FEBS Lett. 1986 Jul 28;203(2):139–143. doi: 10.1016/0014-5793(86)80730-x. [DOI] [PubMed] [Google Scholar]
- Clubb R. T., Thanabal V., Wagner G. A new 3D HN(CA)HA experiment for obtaining fingerprint HN-Halpha peaks in 15N- and 13C-labeled proteins. J Biomol NMR. 1992 Mar;2(2):203–210. doi: 10.1007/BF01875531. [DOI] [PubMed] [Google Scholar]
- Craescu C. T., Rouvière N., Popescu A., Cerpolini E., Lebeau M. C., Baulieu E. E., Mispelter J. Three-dimensional structure of the immunophilin-like domain of FKBP59 in solution. Biochemistry. 1996 Aug 27;35(34):11045–11052. doi: 10.1021/bi960975p. [DOI] [PubMed] [Google Scholar]
- Derewenda U., Brzozowski A. M., Lawson D. M., Derewenda Z. S. Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry. 1992 Feb 11;31(5):1532–1541. doi: 10.1021/bi00120a034. [DOI] [PubMed] [Google Scholar]
- Grzesiek S., Bax A. Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR. 1993 Mar;3(2):185–204. doi: 10.1007/BF00178261. [DOI] [PubMed] [Google Scholar]
- Grzesiek S., Döbeli H., Gentz R., Garotta G., Labhardt A. M., Bax A. 1H, 13C, and 15N NMR backbone assignments and secondary structure of human interferon-gamma. Biochemistry. 1992 Sep 8;31(35):8180–8190. doi: 10.1021/bi00150a009. [DOI] [PubMed] [Google Scholar]
- Ikura M., Kay L. E., Bax A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry. 1990 May 15;29(19):4659–4667. doi: 10.1021/bi00471a022. [DOI] [PubMed] [Google Scholar]
- Kraulis J., Clore G. M., Nilges M., Jones T. A., Pettersson G., Knowles J., Gronenborn A. M. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry. 1989 Sep 5;28(18):7241–7257. doi: 10.1021/bi00444a016. [DOI] [PubMed] [Google Scholar]
- Levitt M., Perutz M. F. Aromatic rings act as hydrogen bond acceptors. J Mol Biol. 1988 Jun 20;201(4):751–754. doi: 10.1016/0022-2836(88)90471-8. [DOI] [PubMed] [Google Scholar]
- Marion D., Driscoll P. C., Kay L. E., Wingfield P. T., Bax A., Gronenborn A. M., Clore G. M. Overcoming the overlap problem in the assignment of 1H NMR spectra of larger proteins by use of three-dimensional heteronuclear 1H-15N Hartmann-Hahn-multiple quantum coherence and nuclear Overhauser-multiple quantum coherence spectroscopy: application to interleukin 1 beta. Biochemistry. 1989 Jul 25;28(15):6150–6156. doi: 10.1021/bi00441a004. [DOI] [PubMed] [Google Scholar]
- Martinez C., De Geus P., Lauwereys M., Matthyssens G., Cambillau C. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature. 1992 Apr 16;356(6370):615–618. doi: 10.1038/356615a0. [DOI] [PubMed] [Google Scholar]
- Martinez C., Nicolas A., van Tilbeurgh H., Egloff M. P., Cudrey C., Verger R., Cambillau C. Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry. 1994 Jan 11;33(1):83–89. doi: 10.1021/bi00167a011. [DOI] [PubMed] [Google Scholar]
- Ohnishi K., Toida J., Nakazawa H., Sekiguchi J. Genome structure and nucleotide sequence of a lipolytic enzyme gene of Aspergillus oryzae. FEMS Microbiol Lett. 1995 Feb 15;126(2):145–150. doi: 10.1111/j.1574-6968.1995.tb07408.x. [DOI] [PubMed] [Google Scholar]
- Remerowski M. L., Domke T., Groenewegen A., Pepermans H. A., Hilbers C. W., van de Ven F. J. 1H, 13C and 15N NMR backbone assignments and secondary structure of the 269-residue protease subtilisin 309 from Bacillus lentus. J Biomol NMR. 1994 Mar;4(2):257–278. doi: 10.1007/BF00175252. [DOI] [PubMed] [Google Scholar]
- Sweigard J. A., Chumley F. G., Valent B. Cloning and analysis of CUT1, a cutinase gene from Magnaporthe grisea. Mol Gen Genet. 1992 Mar;232(2):174–182. doi: 10.1007/BF00279994. [DOI] [PubMed] [Google Scholar]
- Tüchsen E., Woodward C. Assignment of asparagine-44 side-chain primary amide 1H NMR resonances and the peptide amide N1H resonance of glycine-37 in basic pancreatic trypsin inhibitor. Biochemistry. 1987 Apr 7;26(7):1918–1925. doi: 10.1021/bi00381a020. [DOI] [PubMed] [Google Scholar]
- Weisenborn P. C., Meder H., Egmond M. R., Visser T. J., van Hoek A. Photophysics of the single tryptophan residue in Fusarium solani Cutinase: evidence for the occurrence of conformational substates with unusual fluorescence behaviour. Biophys Chem. 1996 Feb 8;58(3):281–288. doi: 10.1016/0301-4622(95)00079-8. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Bigam C. G., Yao J., Abildgaard F., Dyson H. J., Oldfield E., Markley J. L., Sykes B. D. 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR. 1995 Sep;6(2):135–140. doi: 10.1007/BF00211777. [DOI] [PubMed] [Google Scholar]
- Wishart D. S., Sykes B. D. The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 1994 Mar;4(2):171–180. doi: 10.1007/BF00175245. [DOI] [PubMed] [Google Scholar]
- Zhang W., Gmeiner W. H. Improved 3D gd-HCACO and gd-(H)CACO-TOCSY experiments for isotopically enriched proteins dissolved in H2O. J Biomol NMR. 1996 May;7(3):247–250. doi: 10.1007/BF00202041. [DOI] [PubMed] [Google Scholar]
- van Tilbeurgh H., Egloff M. P., Martinez C., Rugani N., Verger R., Cambillau C. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography. Nature. 1993 Apr 29;362(6423):814–820. doi: 10.1038/362814a0. [DOI] [PubMed] [Google Scholar]