Abstract
Carnivory in plants has developed as an evolutionary adaptation to nutrient-poor environments. A significant investment of the resources of a carnivorous plant is committed to producing the traps, attractants, and digestive enzymes needed for the carnivory. The cost:benefit ratio of carnivory can be improved by either maximizing the prey capture rate or by reducing the metabolic commitment toward carnivory. Using the pitcher plant Sarracenia purpurea, we have investigated whether the expression of the hydrolytic enzymes needed for digestion is regulated in response to the presence of prey. Expression of protease, RNase, nuclease, and phosphatase activities could be induced in the fluid of nonactive traps by the addition of nucleic acids, protein, or reduced nitrogen, suggesting that hydrolase expression is induced upon perception of the appropriate chemical signal. Hydrolase expression was also developmentally controlled since expression commenced upon opening of a trap, increased for several days, and in the absence of prey largely ceased within 2 weeks. Nevertheless, the traps remained competent to induce expression in response to the appropriate signals. These data suggest that in young traps hydrolase expression is developmentally regulated, which is later replaced by a signal transduction mechanism, and they demonstrate the ability of a carnivorous species to respond to the availability of resources.
Full Text
The Full Text of this article is available as a PDF (2.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albert V. A., Williams S. E., Chase M. W. Carnivorous plants: phylogeny and structural evolution. Science. 1992 Sep 11;257(5076):1491–1495. doi: 10.1126/science.1523408. [DOI] [PubMed] [Google Scholar]
- Blank A., McKeon T. A. Three RNases in Senescent and Nonsenescent Wheat Leaves : Characterization by Activity Staining in Sodium Dodecyl Sulfate-Polyacrylamide Gels. Plant Physiol. 1991 Dec;97(4):1402–1408. doi: 10.1104/pp.97.4.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blank A., Sugiyama R. H., Dekker C. A. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Anal Biochem. 1982 Mar 1;120(2):267–275. doi: 10.1016/0003-2697(82)90347-5. [DOI] [PubMed] [Google Scholar]
- Compton M. M., Cidlowski J. A. Identification of a glucocorticoid-induced nuclease in thymocytes. A potential "lysis gene" product. J Biol Chem. 1987 Jun 15;262(17):8288–8292. [PubMed] [Google Scholar]
- Heslop-Harrison Y. Enzyme release in carnivorous plants. Front Biol. 1975;43(4):525–578. [PubMed] [Google Scholar]
- Jost W., Bak H., Glund K., Terpstra P., Beintema J. J. Amino acid sequence of an extracellular, phosphate-starvation-induced ribonuclease from cultured tomato (Lycopersicon esculentum) cells. Eur J Biochem. 1991 May 23;198(1):1–6. doi: 10.1111/j.1432-1033.1991.tb15978.x. [DOI] [PubMed] [Google Scholar]
- Nürnberger T., Abel S., Jost W., Glund K. Induction of an Extracellular Ribonuclease in Cultured Tomato Cells upon Phosphate Starvation. Plant Physiol. 1990 Apr;92(4):970–976. doi: 10.1104/pp.92.4.970. [DOI] [PMC free article] [PubMed] [Google Scholar]