Skip to main content
Environmental Health Perspectives logoLink to Environmental Health Perspectives
. 1998 Feb;106(2):71–77. doi: 10.1289/ehp.9810671

Risk assessment for the harmful effects of UVB radiation on the immunological resistance to infectious diseases.

W Goettsch 1, J Garssen 1, W Slob 1, F R de Gruijl 1, H Van Loveren 1
PMCID: PMC1533030  PMID: 9435148

Abstract

Risk assessment comprises four steps: hazard identification, dose-response assessment, exposure assessment, and risk characterization. In this study, the effects of increased ultraviolet B(UVB, 280-315 nm) radiation on immune functions and the immunological resistance to infectious diseases in rats were analyzed according to this strategy. In a parallelogram approach, nonthreshold mathematical methods were used to estimate the risk for the human population after increased exposure to UVB radiation. These data demonstrate, using a worst-case strategy (sensitive individuals, no adaptation), that exposure for approximately 90 min (local noon) at 40 degrees N in July might lead to 50% suppression of specific T-cell mediated responses to Listeria monocytogenes in humans who were not preexposed to UVB (i.e., not adapted). Additionally, a 5% decrease in the thickness of the ozone layer might shorten this exposure time by approximately 2.5%. These data demonstrate that UVB radiation, at doses relevant to outdoor exposure, may affect the specific cellular immune response to Listeria bacteria in humans. Whether this will also lead to a lowered resistance (i.e.,increased pathogenic load) in humans is not known, although it was demonstrated that UVB-induced immunosuppression in rats was sufficient to increase the pathogenic load. Epidemiology studies are needed to validate and improve estimates for the potential effects of increased UVB exposure on infectious diseases in humans.

Full text

PDF
71

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aberer W., Schuler G., Stingl G., Hönigsmann H., Wolff K. Ultraviolet light depletes surface markers of Langerhans cells. J Invest Dermatol. 1981 Mar;76(3):202–210. doi: 10.1111/1523-1747.ep12525745. [DOI] [PubMed] [Google Scholar]
  2. Baadsgaard O., Salvo B., Mannie A., Dass B., Fox D. A., Cooper K. D. In vivo ultraviolet-exposed human epidermal cells activate T suppressor cell pathways that involve CD4+CD45RA+ suppressor-inducer T cells. J Immunol. 1990 Nov 1;145(9):2854–2861. [PubMed] [Google Scholar]
  3. Cooper K. D., Oberhelman L., Hamilton T. A., Baadsgaard O., Terhune M., LeVee G., Anderson T., Koren H. UV exposure reduces immunization rates and promotes tolerance to epicutaneous antigens in humans: relationship to dose, CD1a-DR+ epidermal macrophage induction, and Langerhans cell depletion. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8497–8501. doi: 10.1073/pnas.89.18.8497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Fabo E. C., Noonan F. P., Frederick J. E. Biologically effective doses of sunlight for immune suppression at various latitudes and their relationship to changes in stratospheric ozone. Photochem Photobiol. 1990 Oct;52(4):811–817. doi: 10.1111/j.1751-1097.1990.tb08686.x. [DOI] [PubMed] [Google Scholar]
  5. De Fabo E. C., Noonan F. P. Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med. 1983 Jul 1;158(1):84–98. doi: 10.1084/jem.158.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Diffey B. L. Analysis of the risk of skin cancer from sunlight and solaria in subjects living in northern Europe. Photodermatol. 1987 Jun;4(3):118–126. [PubMed] [Google Scholar]
  7. Garssen J., Goettsch W., de Gruijl F., Slob W., van Loveren H. Risk assessment of UVB effects on resistance to infectious diseases. Photochem Photobiol. 1996 Aug;64(2):269–274. doi: 10.1111/j.1751-1097.1996.tb02457.x. [DOI] [PubMed] [Google Scholar]
  8. Garssen J., Van der Vliet H., De Klerk A., Goettsch W., Dormans J. A., Bruggeman C. A., Osterhaus A. D., Van Loveren H. A rat cytomegalovirus infection model as a tool for immunotoxicity testing. Eur J Pharmacol. 1995 Mar 16;292(3-4):223–231. doi: 10.1016/0926-6917(95)90026-8. [DOI] [PubMed] [Google Scholar]
  9. Gilmour J. W., Vestey J. P., George S., Norval M. Effect of phototherapy and urocanic acid isomers on natural killer cell function. J Invest Dermatol. 1993 Aug;101(2):169–174. doi: 10.1111/1523-1747.ep12363652. [DOI] [PubMed] [Google Scholar]
  10. Goettsch W., Garssen J., De Gruijl F. R., Van Loveren H. UVB-induced decreased resistance to Trichinella spiralis in the rat is related to impaired cellular immunity. Photochem Photobiol. 1996 Sep;64(3):581–585. doi: 10.1111/j.1751-1097.1996.tb03108.x. [DOI] [PubMed] [Google Scholar]
  11. Goettsch W., Garssen J., Deijns A., de Gruijl F. R., van Loveren H. UV-B exposure impairs resistance to infection by Trichinella spiralis. Environ Health Perspect. 1994 Mar;102(3):298–301. doi: 10.1289/ehp.94102298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goettsch W., Garssen J., de Klerk A., Herremans T. M., Dortant P., de Gruijl F. R., Van Loveren H. Effects of ultraviolet-B exposure on the resistance to Listeria monocytogenes in the rat. Photochem Photobiol. 1996 May;63(5):672–679. doi: 10.1111/j.1751-1097.1996.tb05672.x. [DOI] [PubMed] [Google Scholar]
  13. Morison W. L. Effects of ultraviolet radiation on the immune system in humans. Photochem Photobiol. 1989 Oct;50(4):515–524. doi: 10.1111/j.1751-1097.1989.tb05557.x. [DOI] [PubMed] [Google Scholar]
  14. Noel J. C., Detremmerie O., Peny M. O., Candaele M., Verhest A., Heenen M., De Dobbeleer G. Transformation of common warts into squamous cell carcinoma on sun-exposed areas in an immunosuppressed patient. Dermatology. 1994;189(3):308–311. doi: 10.1159/000246869. [DOI] [PubMed] [Google Scholar]
  15. Noonan F. P., Hoffman H. A. Susceptibility to immunosuppression by ultraviolet B radiation in the mouse. Immunogenetics. 1994;39(1):29–39. doi: 10.1007/BF00171794. [DOI] [PubMed] [Google Scholar]
  16. Noonan F. P., Hoffman H. A. Susceptibility to immunosuppression by ultraviolet B radiation in the mouse. Immunogenetics. 1994;39(1):29–39. doi: 10.1007/BF00171794. [DOI] [PubMed] [Google Scholar]
  17. Noonan F. P., Lewis F. A. UVB-induced immune suppression and infection with Schistosoma mansoni. Photochem Photobiol. 1995 Jan;61(1):99–105. doi: 10.1111/j.1751-1097.1995.tb09249.x. [DOI] [PubMed] [Google Scholar]
  18. Norval M., el-Ghorr A., Garssen J., Van Loveren H. The effects of ultraviolet light irradiation on viral infections. Br J Dermatol. 1994 Jun;130(6):693–700. doi: 10.1111/j.1365-2133.1994.tb03404.x. [DOI] [PubMed] [Google Scholar]
  19. Selgrade M. K., Daniels M. J., Dean J. H. Correlation between chemical suppression of natural killer cell activity in mice and susceptibility to cytomegalovirus: rationale for applying murine cytomegalovirus as a host resistance model and for interpreting immunotoxicity testing in terms of risk of disease. J Toxicol Environ Health. 1992 Sep;37(1):123–137. doi: 10.1080/15287399209531660. [DOI] [PubMed] [Google Scholar]
  20. Sontag Y., Guikers C. L., Vink A. A., de Gruijl F. R., van Loveren H., Garssen J., Roza L., Kripke M. L., van der Leun J. C., van Vloten W. A. Cells with UV-specific DNA damage are present in murine lymph nodes after in vivo UV irradiation. J Invest Dermatol. 1995 May;104(5):734–738. doi: 10.1111/1523-1747.ep12606971. [DOI] [PubMed] [Google Scholar]
  21. Streilein J. W., Bergstresser P. R. Genetic basis of ultraviolet-B effects on contact hypersensitivity. Immunogenetics. 1988;27(4):252–258. doi: 10.1007/BF00376119. [DOI] [PubMed] [Google Scholar]
  22. Ullrich S. E. The role of epidermal cytokines in the generation of cutaneous immune reactions and ultraviolet radiation-induced immune suppression. Photochem Photobiol. 1995 Sep;62(3):389–401. doi: 10.1111/j.1751-1097.1995.tb02359.x. [DOI] [PubMed] [Google Scholar]
  23. Vermeer M., Schmieder G. J., Yoshikawa T., van den Berg J. W., Metzman M. S., Taylor J. R., Streilein J. W. Effects of ultraviolet B light on cutaneous immune responses of humans with deeply pigmented skin. J Invest Dermatol. 1991 Oct;97(4):729–734. doi: 10.1111/1523-1747.ep12484259. [DOI] [PubMed] [Google Scholar]
  24. Yoshikawa T., Rae V., Bruins-Slot W., Van den Berg J. W., Taylor J. R., Streilein J. W. Susceptibility to effects of UVB radiation on induction of contact hypersensitivity as a risk factor for skin cancer in humans. J Invest Dermatol. 1990 Nov;95(5):530–536. doi: 10.1111/1523-1747.ep12504877. [DOI] [PubMed] [Google Scholar]
  25. Yoshikawa T., Streilein J. W. Genetic basis of the effects of ultraviolet light B on cutaneous immunity. Evidence that polymorphism at the Tnfa and Lps loci governs susceptibility. Immunogenetics. 1990;32(6):398–405. doi: 10.1007/BF00241633. [DOI] [PubMed] [Google Scholar]
  26. van Praag M. C., Out-Luyting C., Claas F. H., Vermeer B. J., Mommaas A. M. Effect of topical sunscreens on the UV-radiation-induced suppression of the alloactivating capacity in human skin in vivo. J Invest Dermatol. 1991 Oct;97(4):629–633. doi: 10.1111/1523-1747.ep12483065. [DOI] [PubMed] [Google Scholar]

Articles from Environmental Health Perspectives are provided here courtesy of National Institute of Environmental Health Sciences

RESOURCES