Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jan;74(1):192–198. doi: 10.1016/S0006-3495(98)77779-3

Photoactivation of rhodopsin causes an increased hydrogen-deuterium exchange of buried peptide groups.

P Rath 1, W J DeGrip 1, K J Rothschild 1
PMCID: PMC1299374  PMID: 9449322

Abstract

A key step in visual transduction is the light-induced conformational changes of rhodopsin that lead to binding and activation of the G-protein transducin. In order to explore the nature of these conformational changes, time-resolved Fourier transform infrared spectroscopy was used to measure the kinetics of hydrogen/deuterium exchange in rhodopsin upon photoexcitation. The extent of hydrogen/deuterium exchange of backbone peptide groups can be monitored by measuring the integrated intensity of the amide II and amide II' bands. When rhodopsin films are exposed to D2O in the dark for long periods, the amide II band retains at least 60% of its integrated intensity, reflecting a core of backbone peptide groups that are resistant to H/D exchange. Upon photoactivation, rhodopsin in the presence of D2O exhibits a new phase of H/D exchange which at 10 degrees C consists of fast (time constant approximately 30 min) and slow (approximately 11 h) components. These results indicate that photoactivation causes buried portions of the rhodopsin backbone structure to become more accessible.

Full Text

The Full Text of this article is available as a PDF (87.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkin I. T., MacKenzie K. R., Fisher L., Aimoto S., Engelman D. M., Smith S. O. Mapping the lipid-exposed surfaces of membrane proteins. Nat Struct Biol. 1996 Mar;3(3):240–243. doi: 10.1038/nsb0396-240. [DOI] [PubMed] [Google Scholar]
  2. Baenziger J. E., Miller K. W., McCarthy M. P., Rothschild K. J. Probing conformational changes in the nicotinic acetylcholine receptor by Fourier transform infrared difference spectroscopy. Biophys J. 1992 Apr;62(1):64–66. doi: 10.1016/S0006-3495(92)81780-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bagley K. A., Balogh-Nair V., Croteau A. A., Dollinger G., Ebrey T. G., Eisenstein L., Hong M. K., Nakanishi K., Vittitow J. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature. Biochemistry. 1985 Oct 22;24(22):6055–6071. doi: 10.1021/bi00343a006. [DOI] [PubMed] [Google Scholar]
  4. Braiman M. S., Rothschild K. J. Fourier transform infrared techniques for probing membrane protein structure. Annu Rev Biophys Biophys Chem. 1988;17:541–570. doi: 10.1146/annurev.bb.17.060188.002545. [DOI] [PubMed] [Google Scholar]
  5. Clark N. A., Rothschild K. J., Luippold D. A., Simon B. A. Surface-induced lamellar orientation of multilayer membrane arrays. Theoretical analysis and a new method with application to purple membrane fragments. Biophys J. 1980 Jul;31(1):65–96. doi: 10.1016/S0006-3495(80)85041-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. De Grip W. J., Daemen F. J., Bonting S. L. Isolation and purification of bovine rhodopsin. Methods Enzymol. 1980;67:301–320. doi: 10.1016/s0076-6879(80)67038-4. [DOI] [PubMed] [Google Scholar]
  7. De Grip W. J., Daemen F. J. Sulfhydryl chemistry of rhodopsin. Methods Enzymol. 1982;81:223–236. doi: 10.1016/s0076-6879(82)81035-5. [DOI] [PubMed] [Google Scholar]
  8. DeCaluwé G. L., Bovee-Geurts P. H., Rath P., Rothschild K. J., de Grip W. J. Effect of carboxyl mutations on functional properties of bovine rhodopsin. Biophys Chem. 1995 Sep-Oct;56(1-2):79–87. doi: 10.1016/0301-4622(95)00018-s. [DOI] [PubMed] [Google Scholar]
  9. DeGrip W. J., Gray D., Gillespie J., Bovee P. H., Van den Berg E. M., Lugtenburg J., Rothschild K. J. Photoexcitation of rhodopsin: conformation changes in the chromophore, protein and associated lipids as determined by FTIR difference spectroscopy. Photochem Photobiol. 1988 Oct;48(4):497–504. doi: 10.1111/j.1751-1097.1988.tb02852.x. [DOI] [PubMed] [Google Scholar]
  10. Downer N. W., Bruchman T. J., Hazzard J. H. Infrared spectroscopic study of photoreceptor membrane and purple membrane. Protein secondary structure and hydrogen deuterium exchange. J Biol Chem. 1986 Mar 15;261(8):3640–3647. [PubMed] [Google Scholar]
  11. Downer N. W., Englander S. W. Hydrogen exchange study of membrane-bound rhodopsin. II. Light-induced protein structure change. J Biol Chem. 1977 Nov 25;252(22):8101–8104. [PubMed] [Google Scholar]
  12. Earnest T. N., Roepe P., Braiman M. S., Gillespie J., Rothschild K. J. Orientation of the bacteriorhodopsin chromophore probed by polarized Fourier transform infrared difference spectroscopy. Biochemistry. 1986 Dec 2;25(24):7793–7798. doi: 10.1021/bi00372a002. [DOI] [PubMed] [Google Scholar]
  13. Englander J. J., Downer N. W., Englander S. W. Re-examination of rhodopsin structure by hydrogen exchange. J Biol Chem. 1982 Jul 25;257(14):7982–7986. [PubMed] [Google Scholar]
  14. Englander J. J., Englander S. W. Comparison of bacterial and animal rhodopsins by hydrogen exchange studies. Nature. 1977 Feb 17;265(5595):658–659. doi: 10.1038/265658a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Englander S. W., Mayne L. Protein folding studied using hydrogen-exchange labeling and two-dimensional NMR. Annu Rev Biophys Biomol Struct. 1992;21:243–265. doi: 10.1146/annurev.bb.21.060192.001331. [DOI] [PubMed] [Google Scholar]
  16. Fahmy K., Siebert F., Sakmar T. P. A mutant rhodopsin photoproduct with a protonated Schiff base displays an active-state conformation: a Fourier-transform infrared spectroscopy study. Biochemistry. 1994 Nov 22;33(46):13700–13705. doi: 10.1021/bi00250a021. [DOI] [PubMed] [Google Scholar]
  17. Farahbakhsh Z. T., Hideg K., Hubbell W. L. Photoactivated conformational changes in rhodopsin: a time-resolved spin label study. Science. 1993 Nov 26;262(5138):1416–1419. doi: 10.1126/science.8248781. [DOI] [PubMed] [Google Scholar]
  18. Green B. H., Monger T. G., Alfano R. R., Aton B., Callender R. H. Cis-trans isomerisation in rhodopsin occurs in picoseconds. Nature. 1977 Sep 8;269(5624):179–180. doi: 10.1038/269179a0. [DOI] [PubMed] [Google Scholar]
  19. Hargrave P. A., McDowell J. H. Rhodopsin and phototransduction: a model system for G protein-linked receptors. FASEB J. 1992 Mar;6(6):2323–2331. doi: 10.1096/fasebj.6.6.1544542. [DOI] [PubMed] [Google Scholar]
  20. Haris P. I., Coke M., Chapman D. Fourier transform infrared spectroscopic investigation of rhodopsin structure and its comparison with bacteriorhodopsin. Biochim Biophys Acta. 1989 Apr 6;995(2):160–167. doi: 10.1016/0167-4838(89)90075-7. [DOI] [PubMed] [Google Scholar]
  21. Khorana H. G. Rhodopsin, photoreceptor of the rod cell. An emerging pattern for structure and function. J Biol Chem. 1992 Jan 5;267(1):1–4. [PubMed] [Google Scholar]
  22. Kibelbek J., Mitchell D. C., Beach J. M., Litman B. J. Functional equivalence of metarhodopsin II and the Gt-activating form of photolyzed bovine rhodopsin. Biochemistry. 1991 Jul 9;30(27):6761–6768. doi: 10.1021/bi00241a019. [DOI] [PubMed] [Google Scholar]
  23. Klinger A. L., Braiman M. S. Structural comparison of metarhodopsin II, metarhodopsin III, and opsin based on kinetic analysis of Fourier transform infrared difference spectra. Biophys J. 1992 Nov;63(5):1244–1255. doi: 10.1016/S0006-3495(92)81700-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kühn H., Hargrave P. A. Light-induced binding of guanosinetriphosphatase to bovine photoreceptor membranes: effect of limited proteolysis of the membranes. Biochemistry. 1981 Apr 28;20(9):2410–2417. doi: 10.1021/bi00512a007. [DOI] [PubMed] [Google Scholar]
  25. Ludlam C. F., Arkin I. T., Liu X. M., Rothman M. S., Rath P., Aimoto S., Smith S. O., Engelman D. M., Rothschild K. J. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban. Biophys J. 1996 Apr;70(4):1728–1736. doi: 10.1016/S0006-3495(96)79735-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ludlam C. F., Sonar S., Lee C. P., Coleman M., Herzfeld J., RajBhandary U. L., Rothschild K. J. Site-directed isotope labeling and ATR-FTIR difference spectroscopy of bacteriorhodopsin: the peptide carbonyl group of Tyr 185 is structurally active during the bR-->N transition. Biochemistry. 1995 Jan 10;34(1):2–6. doi: 10.1021/bi00001a001. [DOI] [PubMed] [Google Scholar]
  27. Marrero H., Rothschild K. J. Conformational changes in bacteriorhodopsin studied by infrared attenuated total reflection. Biophys J. 1987 Oct;52(4):629–635. doi: 10.1016/S0006-3495(87)83254-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nishimura S., Sasaki J., Kandori H., Matsuda T., Fukada Y., Maeda A. Structural changes in the peptide backbone in complex formation between activated rhodopsin and transducin studied by FTIR spectroscopy. Biochemistry. 1996 Oct 15;35(41):13267–13271. doi: 10.1021/bi960911e. [DOI] [PubMed] [Google Scholar]
  29. Osborne H. B., Nabedryk-Viala E. The conformation of membrane-bound and detergent-solubilised bovine rhodopsin. A comparative hydrogen-isotope exchange study. Eur J Biochem. 1978 Aug 15;89(1):81–88. doi: 10.1111/j.1432-1033.1978.tb20898.x. [DOI] [PubMed] [Google Scholar]
  30. Osborne H. B., Sardet C., Michel-Villaz M., Chabre M. Structural study of rhodopsin in detergent micelles by small-angle neutron scattering. J Mol Biol. 1978 Aug 5;123(2):177–206. doi: 10.1016/0022-2836(78)90320-0. [DOI] [PubMed] [Google Scholar]
  31. Osborne H. B. The hydrophobic heart of rhodopsin revealed by an infrared 1H-2H exchange study. FEBS Lett. 1977 Dec 15;84(2):217–220. doi: 10.1016/0014-5793(77)80691-1. [DOI] [PubMed] [Google Scholar]
  32. Ostroy S. E. Rhodopsin and the visual process. Biochim Biophys Acta. 1977 Jun 21;463(1):91–125. doi: 10.1016/0304-4173(77)90004-0. [DOI] [PubMed] [Google Scholar]
  33. Pistorius A. M., de Grip W. J. Rhodopsin's secondary structure revisited: assignment of structural elements. Biochem Biophys Res Commun. 1994 Feb 15;198(3):1040–1045. doi: 10.1006/bbrc.1994.1148. [DOI] [PubMed] [Google Scholar]
  34. Rath P., Bovee-Geurts P. H., DeGrip W. J., Rothschild K. J. Photoactivation of rhodopsin involves alterations in cysteine side chains: detection of an S-H band in the Meta I-->Meta II FTIR difference spectrum. Biophys J. 1994 Jun;66(6):2085–2091. doi: 10.1016/S0006-3495(94)81003-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rath P., DeCaluwé L. L., Bovee-Geurts P. H., DeGrip W. J., Rothschild K. J. Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation. Biochemistry. 1993 Oct 5;32(39):10277–10282. doi: 10.1021/bi00090a001. [DOI] [PubMed] [Google Scholar]
  36. Rath P., Spudich E., Neal D. D., Spudich J. L., Rothschild K. J. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I. Biochemistry. 1996 May 28;35(21):6690–6696. doi: 10.1021/bi9600355. [DOI] [PubMed] [Google Scholar]
  37. Regan C. M., de Grip W. J., Daemen F. J., Bonting S. L. Biochemical aspects of the visual process. XXXIX. Sulfhydryl group reactivity as a probe of transient protein conformational changes during rhodopsin photolysis. Biochim Biophys Acta. 1978 Nov 20;537(1):145–152. doi: 10.1016/0005-2795(78)90609-8. [DOI] [PubMed] [Google Scholar]
  38. Rothschild K. J., Andrew J. R., De Grip W. J., Stanley H. E. Opsin structure probed by raman spectroscopy of photoreceptor membranes. Science. 1976 Mar 19;191(4232):1176–1178. doi: 10.1126/science.1257742. [DOI] [PubMed] [Google Scholar]
  39. Rothschild K. J., Cantore W. A., Marrero H. Fourier transform infrared difference spectra of intermediates in rhodopsin bleaching. Science. 1983 Mar 18;219(4590):1333–1335. doi: 10.1126/science.6828860. [DOI] [PubMed] [Google Scholar]
  40. Rothschild K. J., Clark N. A. Polarized infrared spectroscopy of oriented purple membrane. Biophys J. 1979 Mar;25(3):473–487. doi: 10.1016/S0006-3495(79)85317-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rothschild K. J., DeGrip W. J., Sanches R. Fourier transform infrared study of photoreceptor membrane. I. Group assignments based on rhodopsin delipidation and reconstitution. Biochim Biophys Acta. 1980 Mar 13;596(3):338–351. doi: 10.1016/0005-2736(80)90121-2. [DOI] [PubMed] [Google Scholar]
  42. Rothschild K. J., Gillespie J., DeGrip W. J. Evidence for rhodopsin refolding during the decay of Meta II. Biophys J. 1987 Feb;51(2):345–350. doi: 10.1016/S0006-3495(87)83341-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rothschild K. J., Rosen K. M., Clark N. A. Incorporation of photoreceptor membrane into a multilamellar film. Biophys J. 1980 Jul;31(1):45–52. doi: 10.1016/S0006-3495(80)85039-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rothschild K. J., Sanches R., Hsiao T. L., Clark N. A. A spectroscopic study of rhodopsin alpha-helix orientation. Biophys J. 1980 Jul;31(1):53–64. doi: 10.1016/S0006-3495(80)85040-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rothschild K. J., Zagaeski M., Cantore W. A. Conformational changes of bacteriorhodopsin detected by Fourier transform infrared difference spectroscopy. Biochem Biophys Res Commun. 1981 Nov 30;103(2):483–489. doi: 10.1016/0006-291x(81)90478-2. [DOI] [PubMed] [Google Scholar]
  46. Schoenlein R. W., Peteanu L. A., Mathies R. A., Shank C. V. The first step in vision: femtosecond isomerization of rhodopsin. Science. 1991 Oct 18;254(5030):412–415. doi: 10.1126/science.1925597. [DOI] [PubMed] [Google Scholar]
  47. Siebert F., Mäntele W., Gerwert K. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated. Eur J Biochem. 1983 Oct 17;136(1):119–127. doi: 10.1111/j.1432-1033.1983.tb07714.x. [DOI] [PubMed] [Google Scholar]
  48. Susi H., Timasheff S. N., Stevens L. Infrared spectra and protein conformations in aqueous solutions. I. The amide I band in H2O and D2O solutions. J Biol Chem. 1967 Dec 10;242(23):5460–5466. [PubMed] [Google Scholar]
  49. Vuong T. M., Chabre M., Stryer L. Millisecond activation of transducin in the cyclic nucleotide cascade of vision. Nature. 1984 Oct 18;311(5987):659–661. doi: 10.1038/311659a0. [DOI] [PubMed] [Google Scholar]
  50. Wald G. Molecular basis of visual excitation. Science. 1968 Oct 11;162(3850):230–239. doi: 10.1126/science.162.3850.230. [DOI] [PubMed] [Google Scholar]
  51. YOSHIZAWA T., WALD G. Pre-lumirhodopsin and the bleaching of visual pigments. Nature. 1963 Mar 30;197:1279–1286. doi: 10.1038/1971279a0. [DOI] [PubMed] [Google Scholar]
  52. de Grip W. J., Gillespie J., Rothschild K. J. Carboxyl group involvement in the meta I and meta II stages in rhodopsin bleaching. A Fourier transform infrared spectroscopic study. Biochim Biophys Acta. 1985 Aug 28;809(1):97–106. doi: 10.1016/0005-2728(85)90172-0. [DOI] [PubMed] [Google Scholar]
  53. van Breugel P. J., Bovee-Geurts P. H., Bonting S. L., Daemen F. J. Biochemical aspects of the visual process. XL. Spectral and chemical analysis of metarhodopsin III in photoreceptor membrane suspensions. Biochim Biophys Acta. 1979 Oct 19;557(1):188–198. doi: 10.1016/0005-2736(79)90101-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES