Skip to main content
Protein Science : A Publication of the Protein Society logoLink to Protein Science : A Publication of the Protein Society
. 1998 Feb;7(2):433–444. doi: 10.1002/pro.5560070225

Chemical synthesis and structural characterization of the RGD-protein decorsin: a potent inhibitor of platelet aggregation.

P Polverino de Laureto 1, E Scaramella 1, V De Filippis 1, O Marin 1, M G Doni 1, A Fontana 1
PMCID: PMC2143916  PMID: 9521121

Abstract

Decorsin is a 39-residue RGD-protein crosslinked by three disulfide bridges isolated from the leech Macrobdella decora belonging to the family of GPIIb-IIIa antagonists and acting as a potent inhibitor of platelet aggregation. Here we report the solid-phase synthesis of decorsin using the Fmoc strategy. The crude polypeptide was purified by reverse-phase HPLC in its reduced form and allowed to refold in the presence of glutathione. The homogeneity of the synthetic oxidized decorsin was established by reverse-phase HPLC and capillary zone electrophoresis. The results of amino acid analysis after acid hydrolysis of the synthetic protein, NH2-terminal sequencing and mass determination (4,377 Da) by electrospray mass spectrometry were in full agreement with this theory. The correct pairing of the three disulfide bridges in synthetic decorsin was determined by a combined approach of both peptide mapping using proteolytic enzymes and analysis of the disulfide chirality by CD spectroscopy in the near-UV region. Synthetic decorsin inhibited human platelet aggregation with an IC50 of approximately 0.1 microM, a figure quite similar to that determined utilizing decorsin from natural source. In particular, the synthetic protein was 2,000-fold more potent than a model RGD-peptide (e.g., Arg-Gly-Asp-Ser) in inhibiting platelet aggregation. Thermal denaturation experiments of synthetic decorsin, monitored by CD spectroscopy, revealed its high thermal stability (Tm approximately 74 degrees C). The features of the oxidative refolding process of reduced decorsin, as well as the thermal stability of the oxidized species, were compared with those previously determined for the NH2-terminal core domain fragment 1-41 or 1-43 from hirudin. This fragment shows similarity in size, pairing of the three disulfides and three-dimensional structure with those of decorsin, even if very low sequence similarity. It is suggested that the less efficient oxidative folding and the enhanced thermal stability of decorsin in respect to those of hirudin core domain likely can be ascribed to the presence of the six Pro residues in the decorsin chain, whereas none is present in the hirudin domain. The results of this study indicate that decorsin can be obtained by solid-phase methodology in purity and quantities suitable for structural and functional studies and thus open the way to prepare by chemical methods novel decorsin derivatives containing unusual amino acids or even non-peptidic moieties.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bontems F., Gilquin B., Roumestand C., Ménez A., Toma F. Analysis of side-chain organization on a refined model of charybdotoxin: structural and functional implications. Biochemistry. 1992 Sep 1;31(34):7756–7764. doi: 10.1021/bi00149a003. [DOI] [PubMed] [Google Scholar]
  2. Brahms S., Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol. 1980 Apr;138(2):149–178. doi: 10.1016/0022-2836(80)90282-x. [DOI] [PubMed] [Google Scholar]
  3. Creighton T. E., Hillson D. A., Freedman R. B. Catalysis by protein-disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds. J Mol Biol. 1980 Sep 5;142(1):43–62. doi: 10.1016/0022-2836(80)90205-3. [DOI] [PubMed] [Google Scholar]
  4. De Filippis V., Vindigni A., Altichieri L., Fontana A. Core domain of hirudin from the leech Hirudinaria manillensis: chemical synthesis, purification, and characterization of a Trp3 analog of fragment 1-47. Biochemistry. 1995 Jul 25;34(29):9552–9564. doi: 10.1021/bi00029a032. [DOI] [PubMed] [Google Scholar]
  5. Dodt J., Seemüller U., Maschler R., Fritz H. The complete covalent structure of hirudin. Localization of the disulfide bonds. Biol Chem Hoppe Seyler. 1985 Apr;366(4):379–385. doi: 10.1515/bchm3.1985.366.1.379. [DOI] [PubMed] [Google Scholar]
  6. Drakopoulou E., Zinn-Justin S., Guenneugues M., Gilqin B., Ménez A., Vita C. Changing the structural context of a functional beta-hairpin. Synthesis and characterization of a chimera containing the curaremimetic loop of a snake toxin in the scorpion alpha/beta scaffold. J Biol Chem. 1996 May 17;271(20):11979–11987. doi: 10.1074/jbc.271.20.11979. [DOI] [PubMed] [Google Scholar]
  7. Fields G. B., Noble R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res. 1990 Mar;35(3):161–214. doi: 10.1111/j.1399-3011.1990.tb00939.x. [DOI] [PubMed] [Google Scholar]
  8. Fischer G., Schmid F. X. The mechanism of protein folding. Implications of in vitro refolding models for de novo protein folding and translocation in the cell. Biochemistry. 1990 Mar 6;29(9):2205–2212. doi: 10.1021/bi00461a001. [DOI] [PubMed] [Google Scholar]
  9. Folkers P. J., Clore G. M., Driscoll P. C., Dodt J., Köhler S., Gronenborn A. M. Solution structure of recombinant hirudin and the Lys-47----Glu mutant: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry. 1989 Mar 21;28(6):2601–2617. doi: 10.1021/bi00432a038. [DOI] [PubMed] [Google Scholar]
  10. Fontana A. Analysis and modulation of protein stability. Curr Opin Biotechnol. 1991 Aug;2(4):551–560. doi: 10.1016/0958-1669(91)90080-o. [DOI] [PubMed] [Google Scholar]
  11. Garsky V. M., Lumma P. K., Freidinger R. M., Pitzenberger S. M., Randall W. C., Veber D. F., Gould R. J., Friedman P. A. Chemical synthesis of echistatin, a potent inhibitor of platelet aggregation from Echis carinatus: synthesis and biological activity of selected analogs. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4022–4026. doi: 10.1073/pnas.86.11.4022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
  13. Gurrath M., Müller G., Kessler H., Aumailley M., Timpl R. Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides. Eur J Biochem. 1992 Dec 15;210(3):911–921. doi: 10.1111/j.1432-1033.1992.tb17495.x. [DOI] [PubMed] [Google Scholar]
  14. Haruyama H., Wüthrich K. Conformation of recombinant desulfatohirudin in aqueous solution determined by nuclear magnetic resonance. Biochemistry. 1989 May 16;28(10):4301–4312. doi: 10.1021/bi00436a027. [DOI] [PubMed] [Google Scholar]
  15. Heinrikson R. L. Applications of thermolysin in protein structural analysis. Methods Enzymol. 1977;47:175–189. doi: 10.1016/0076-6879(77)47022-8. [DOI] [PubMed] [Google Scholar]
  16. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  17. Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991 Dec 18;202(3):715–728. doi: 10.1111/j.1432-1033.1991.tb16426.x. [DOI] [PubMed] [Google Scholar]
  18. Johnson W. C., Jr Protein secondary structure and circular dichroism: a practical guide. Proteins. 1990;7(3):205–214. doi: 10.1002/prot.340070302. [DOI] [PubMed] [Google Scholar]
  19. Kahn P. C. The interpretation of near-ultraviolet circular dichroism. Methods Enzymol. 1979;61:339–378. doi: 10.1016/0076-6879(79)61018-2. [DOI] [PubMed] [Google Scholar]
  20. Kent S. B. Chemical synthesis of peptides and proteins. Annu Rev Biochem. 1988;57:957–989. doi: 10.1146/annurev.bi.57.070188.004521. [DOI] [PubMed] [Google Scholar]
  21. Klepárník K., Bocek P. Theoretical background for clinical and biomedical applications of electromigration techniques. J Chromatogr. 1991 Sep 13;569(1-2):3–42. doi: 10.1016/0378-4347(91)80225-2. [DOI] [PubMed] [Google Scholar]
  22. Knapp A., Degenhardt T., Dodt J. Hirudisins. Hirudin-derived thrombin inhibitors with disintegrin activity. J Biol Chem. 1992 Dec 5;267(34):24230–24234. [PubMed] [Google Scholar]
  23. Krezel A. M., Wagner G., Seymour-Ulmer J., Lazarus R. A. Structure of the RGD protein decorsin: conserved motif and distinct function in leech proteins that affect blood clotting. Science. 1994 Jun 24;264(5167):1944–1947. doi: 10.1126/science.8009227. [DOI] [PubMed] [Google Scholar]
  24. Lang K., Schmid F. X. Protein-disulphide isomerase and prolyl isomerase act differently and independently as catalysts of protein folding. Nature. 1988 Feb 4;331(6155):453–455. doi: 10.1038/331453a0. [DOI] [PubMed] [Google Scholar]
  25. Lazarus R. A., McDowell R. S. Structural and functional aspects of RGD-containing protein antagonists of glycoprotein IIb-IIIa. Curr Opin Biotechnol. 1993 Aug;4(4):438–445. doi: 10.1016/0958-1669(93)90009-l. [DOI] [PubMed] [Google Scholar]
  26. Manning M. C., Woody R. W. Theoretical study of the contribution of aromatic side chains to the circular dichroism of basic bovine pancreatic trypsin inhibitor. Biochemistry. 1989 Oct 17;28(21):8609–8613. doi: 10.1021/bi00447a051. [DOI] [PubMed] [Google Scholar]
  27. Markwardt F. Past, present and future of hirudin. Haemostasis. 1991;21 (Suppl 1):11–26. doi: 10.1159/000216258. [DOI] [PubMed] [Google Scholar]
  28. Matthews B. W., Nicholson H., Becktel W. J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6663–6667. doi: 10.1073/pnas.84.19.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McCaldon P., Argos P. Oligopeptide biases in protein sequences and their use in predicting protein coding regions in nucleotide sequences. Proteins. 1988;4(2):99–122. doi: 10.1002/prot.340040204. [DOI] [PubMed] [Google Scholar]
  30. Nicholson H., Tronrud D. E., Becktel W. J., Matthews B. W. Analysis of the effectiveness of proline substitutions and glycine replacements in increasing the stability of phage T4 lysozyme. Biopolymers. 1992 Nov;32(11):1431–1441. doi: 10.1002/bip.360321103. [DOI] [PubMed] [Google Scholar]
  31. Otto A., Seckler R. Characterization, stability and refolding of recombinant hirudin. Eur J Biochem. 1991 Nov 15;202(1):67–73. doi: 10.1111/j.1432-1033.1991.tb16345.x. [DOI] [PubMed] [Google Scholar]
  32. Pierret B., Virelizier H., Vita C. Synthesis of a metal binding protein designed on the alpha/beta scaffold of charybdotoxin. Int J Pept Protein Res. 1995 Dec;46(6):471–479. doi: 10.1111/j.1399-3011.1995.tb01602.x. [DOI] [PubMed] [Google Scholar]
  33. Piszkiewicz D., Landon M., Smith E. L. Anomalous cleavage of aspartyl-proline peptide bonds during amino acid sequence determinations. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1173–1178. doi: 10.1016/0006-291x(70)90918-6. [DOI] [PubMed] [Google Scholar]
  34. Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
  35. Radomski M., Moncada S. An improved method for washing of human platelets with prostacyclin. Thromb Res. 1983 May 15;30(4):383–389. doi: 10.1016/0049-3848(83)90230-x. [DOI] [PubMed] [Google Scholar]
  36. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  37. Robson V. M., Rae I. D., Ng F. Identification of the aspartimide structure in a previously-reported peptide. Biol Chem Hoppe Seyler. 1990 May;371(5):423–431. doi: 10.1515/bchm3.1990.371.1.423. [DOI] [PubMed] [Google Scholar]
  38. Rydel T. J., Ravichandran K. G., Tulinsky A., Bode W., Huber R., Roitsch C., Fenton J. W., 2nd The structure of a complex of recombinant hirudin and human alpha-thrombin. Science. 1990 Jul 20;249(4966):277–280. doi: 10.1126/science.2374926. [DOI] [PubMed] [Google Scholar]
  39. Rydel T. J., Tulinsky A., Bode W., Huber R. Refined structure of the hirudin-thrombin complex. J Mol Biol. 1991 Sep 20;221(2):583–601. doi: 10.1016/0022-2836(91)80074-5. [DOI] [PubMed] [Google Scholar]
  40. Saxena V. P., Wetlaufer D. B. Formation of three-dimensional structure in proteins. I. Rapid nonenzymic reactivation of reduced lysozyme. Biochemistry. 1970 Dec 8;9(25):5015–5023. doi: 10.1021/bi00827a028. [DOI] [PubMed] [Google Scholar]
  41. Scacheri E., Nitti G., Valsasina B., Orsini G., Visco C., Ferrera M., Sawyer R. T., Sarmientos P. Novel hirudin variants from the leech Hirudinaria manillensis. Amino acid sequence, cDNA cloning and genomic organization. Eur J Biochem. 1993 May 15;214(1):295–304. doi: 10.1111/j.1432-1033.1993.tb17924.x. [DOI] [PubMed] [Google Scholar]
  42. Scarborough R. M., Naughton M. A., Teng W., Rose J. W., Phillips D. R., Nannizzi L., Arfsten A., Campbell A. M., Charo I. F. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J Biol Chem. 1993 Jan 15;268(2):1066–1073. [PubMed] [Google Scholar]
  43. Seymour J. L., Henzel W. J., Nevins B., Stults J. T., Lazarus R. A. Decorsin. A potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor from the leech Macrobdella decora. J Biol Chem. 1990 Jun 15;265(17):10143–10147. [PubMed] [Google Scholar]
  44. Strickland E. H. Aromatic contributions to circular dichroism spectra of proteins. CRC Crit Rev Biochem. 1974 Jan;2(1):113–175. doi: 10.3109/10409237409105445. [DOI] [PubMed] [Google Scholar]
  45. Stringer K. A., Lindenfeld J. Hirudins: antithrombin anticoagulants. Ann Pharmacother. 1992 Dec;26(12):1535–1540. doi: 10.1177/106002809202601211. [DOI] [PubMed] [Google Scholar]
  46. Szyperski T., Güntert P., Stone S. R., Wüthrich K. Nuclear magnetic resonance solution structure of hirudin(1-51) and comparison with corresponding three-dimensional structures determined using the complete 65-residue hirudin polypeptide chain. J Mol Biol. 1992 Dec 20;228(4):1193–1205. doi: 10.1016/0022-2836(92)90325-e. [DOI] [PubMed] [Google Scholar]
  47. Thannhauser T. W., Rothwarf D. M., Scheraga H. A. Kinetic studies of the regeneration of recombinant hirudin variant 1 with oxidized and reduced dithiothreitol. Biochemistry. 1997 Feb 25;36(8):2154–2165. doi: 10.1021/bi962340w. [DOI] [PubMed] [Google Scholar]
  48. Toumadje A., Alcorn S. W., Johnson W. C., Jr Extending CD spectra of proteins to 168 nm improves the analysis for secondary structures. Anal Biochem. 1992 Feb 1;200(2):321–331. doi: 10.1016/0003-2697(92)90473-k. [DOI] [PubMed] [Google Scholar]
  49. Varley P. G., Pain R. H. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J Mol Biol. 1991 Jul 20;220(2):531–538. doi: 10.1016/0022-2836(91)90028-5. [DOI] [PubMed] [Google Scholar]
  50. Vihinen M. Relationship of protein flexibility to thermostability. Protein Eng. 1987 Dec;1(6):477–480. doi: 10.1093/protein/1.6.477. [DOI] [PubMed] [Google Scholar]
  51. Vindigni A., De Filippis V., Zanotti G., Visco C., Orsini G., Fontana A. Probing the structure of hirudin from Hirudinaria manillensis by limited proteolysis. Isolation, characterization and thrombin-inhibitory properties of N-terminal fragments. Eur J Biochem. 1994 Dec 1;226(2):323–333. doi: 10.1111/j.1432-1033.1994.tb20056.x. [DOI] [PubMed] [Google Scholar]
  52. Vita C., Bontems F., Bouet F., Tauc M., Poujeol P., Vatanpour H., Harvey A. L., Menez A., Toma F. Synthesis of charybdotoxin and of two N-terminal truncated analogues. Structural and functional characterisation. Eur J Biochem. 1993 Oct 1;217(1):157–169. doi: 10.1111/j.1432-1033.1993.tb18231.x. [DOI] [PubMed] [Google Scholar]
  53. Vita C., Roumestand C., Toma F., Ménez A. Scorpion toxins as natural scaffolds for protein engineering. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6404–6408. doi: 10.1073/pnas.92.14.6404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Vuilleumier S., Sancho J., Loewenthal R., Fersht A. R. Circular dichroism studies of barnase and its mutants: characterization of the contribution of aromatic side chains. Biochemistry. 1993 Oct 5;32(39):10303–10313. doi: 10.1021/bi00090a005. [DOI] [PubMed] [Google Scholar]
  55. Watanabe K., Masuda T., Ohashi H., Mihara H., Suzuki Y. Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule. Eur J Biochem. 1994 Dec 1;226(2):277–283. doi: 10.1111/j.1432-1033.1994.tb20051.x. [DOI] [PubMed] [Google Scholar]
  56. Woo D. D., Clark-Lewis I., Chait B. T., Kent S. B. Chemical synthesis in protein engineering: total synthesis, purification and covalent structural characterization of a mitogenic protein, human transforming growth factor-alpha. Protein Eng. 1989 Oct;3(1):29–37. doi: 10.1093/protein/3.1.29. [DOI] [PubMed] [Google Scholar]
  57. Yamada K. M. Adhesive recognition sequences. J Biol Chem. 1991 Jul 15;266(20):12809–12812. [PubMed] [Google Scholar]
  58. Zinn-Justin S., Guenneugues M., Drakopoulou E., Gilquin B., Vita C., Ménez A. Transfer of a beta-hairpin from the functional site of snake curaremimetic toxins to the alpha/beta scaffold of scorpion toxins: three-dimensional solution structure of the chimeric protein. Biochemistry. 1996 Jul 2;35(26):8535–8543. doi: 10.1021/bi960466n. [DOI] [PubMed] [Google Scholar]

Articles from Protein Science : A Publication of the Protein Society are provided here courtesy of The Protein Society

RESOURCES