Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1998 Jul 15;26(14):3410–3417. doi: 10.1093/nar/26.14.3410

Oligonucleotide binding specificities of the hnRNP C protein tetramer.

S R Soltaninassab 1, J G McAfee 1, L Shahied-Milam 1, W M LeStourgeon 1
PMCID: PMC147712  PMID: 9649627

Abstract

Through the use of various non-equilibrium RNA binding techniques, the C protein tetramer of mammalian40S hnRNP particles has been characterized previously as a poly(U) binding protein with specificity for the pyrimidine-rich sequences that often precede 3' intron-exon junctions. C protein has also been characterized as a sequence-independent RNA chaperonin that is distributed along nascent transcripts through cooperative binding and as a protein ruler that defines the length of RNA packaged in 40S monoparticles. In this study fluorescence spectroscopy was used to monitor C protein-oligonucleotide binding in a competition binding assay under equilibrium conditions. Twenty nucleotide substrates corresponding to polypyrimidine tracts from IVS1 of the adenovirus-2 major late transcript, the adenovirus-2 oncoprotein E1A 3' splice site, IVS2 of human alpha-tropomyosin, the consensus polypyrimidine tract for U2AF65, AUUUA repeats and r(U)20were used as competitors. A 20 nt beta-globin intronic sequence and a randomly generated oligo were used as competitor controls. These studies reveal that native C protein possesses no enhanced affinity for uridine-rich oligonucleotides, but they confirm the enhanced affinity of C protein for an oligonucleotide identified as a high affinity substrate through selection and amplification. Evidence that the affinity of C protein for the winner sequence is due primarily to its unique structure or to a unique context is seen in its retained substrate affinity when contiguous uridines are replaced with contiguous guanosines.

Full Text

The Full Text of this article is available as a PDF (108.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdul-Manan N., O'Malley S. M., Williams K. R. Origins of binding specificity of the A1 heterogeneous nuclear ribonucleoprotein. Biochemistry. 1996 Mar 19;35(11):3545–3554. doi: 10.1021/bi952298p. [DOI] [PubMed] [Google Scholar]
  2. Abdul-Manan N., Williams K. R. hnRNP A1 binds promiscuously to oligoribonucleotides: utilization of random and homo-oligonucleotides to discriminate sequence from base-specific binding. Nucleic Acids Res. 1996 Oct 15;24(20):4063–4070. doi: 10.1093/nar/24.20.4063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amrute S. B., Abdul-Manan Z., Pandey V., Williams K. R., Modak M. J. Purification and nucleic acid binding properties of a fragment of type C1/C2 heterogeneous nuclear ribonucleoprotein from thymic nuclear extracts. Biochemistry. 1994 Jul 12;33(27):8282–8291. doi: 10.1021/bi00193a015. [DOI] [PubMed] [Google Scholar]
  4. Barnett S. F., LeStourgeon W. M., Friedman D. L. Rapid purification of native C protein from nuclear ribonucleoprotein particles. J Biochem Biophys Methods. 1988 May;16(1):87–97. doi: 10.1016/0165-022x(88)90106-6. [DOI] [PubMed] [Google Scholar]
  5. Barnett S. F., Theiry T. A., LeStourgeon W. M. The core proteins A2 and B1 exist as (A2)3B1 tetramers in 40S nuclear ribonucleoprotein particles. Mol Cell Biol. 1991 Feb;11(2):864–871. doi: 10.1128/mcb.11.2.864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett M., Michaud S., Kingston J., Reed R. Protein components specifically associated with prespliceosome and spliceosome complexes. Genes Dev. 1992 Oct;6(10):1986–2000. doi: 10.1101/gad.6.10.1986. [DOI] [PubMed] [Google Scholar]
  7. Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
  8. Burd C. G., Dreyfuss G. RNA binding specificity of hnRNP A1: significance of hnRNP A1 high-affinity binding sites in pre-mRNA splicing. EMBO J. 1994 Mar 1;13(5):1197–1204. doi: 10.1002/j.1460-2075.1994.tb06369.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Choi Y. D., Grabowski P. J., Sharp P. A., Dreyfuss G. Heterogeneous nuclear ribonucleoproteins: role in RNA splicing. Science. 1986 Mar 28;231(4745):1534–1539. doi: 10.1126/science.3952495. [DOI] [PubMed] [Google Scholar]
  10. Conway G., Wooley J., Bibring T., LeStourgeon W. M. Ribonucleoproteins package 700 nucleotides of pre-mRNA into a repeating array of regular particles. Mol Cell Biol. 1988 Jul;8(7):2884–2895. doi: 10.1128/mcb.8.7.2884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Görlach M., Burd C. G., Dreyfuss G. The determinants of RNA-binding specificity of the heterogeneous nuclear ribonucleoprotein C proteins. J Biol Chem. 1994 Sep 16;269(37):23074–23078. [PubMed] [Google Scholar]
  12. Görlach M., Burd C. G., Portman D. S., Dreyfuss G. The hnRNP proteins. Mol Biol Rep. 1993 Aug;18(2):73–78. doi: 10.1007/BF00986759. [DOI] [PubMed] [Google Scholar]
  13. Görlach M., Wittekind M., Beckman R. A., Mueller L., Dreyfuss G. Interaction of the RNA-binding domain of the hnRNP C proteins with RNA. EMBO J. 1992 Sep;11(9):3289–3295. doi: 10.1002/j.1460-2075.1992.tb05407.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hamilton B. J., Nagy E., Malter J. S., Arrick B. A., Rigby W. F. Association of heterogeneous nuclear ribonucleoprotein A1 and C proteins with reiterated AUUUA sequences. J Biol Chem. 1993 Apr 25;268(12):8881–8887. [PubMed] [Google Scholar]
  15. Harris S. G., Hoch S. O., Smith H. C. Chemical cross-linking of Sm and RNP antigenic proteins. Biochemistry. 1988 Jun 28;27(13):4595–4600. doi: 10.1021/bi00413a002. [DOI] [PubMed] [Google Scholar]
  16. Harris S. G., Martin T. E., Smith H. C. Reversible chemical cross-linking and ribonuclease digestion analysis of the organization of proteins in ribonucleoprotein particles. Mol Cell Biochem. 1988 Nov;84(1):17–28. doi: 10.1007/BF00235189. [DOI] [PubMed] [Google Scholar]
  17. Huang M., Rech J. E., Northington S. J., Flicker P. F., Mayeda A., Krainer A. R., LeStourgeon W. M. The C-protein tetramer binds 230 to 240 nucleotides of pre-mRNA and nucleates the assembly of 40S heterogeneous nuclear ribonucleoprotein particles. Mol Cell Biol. 1994 Jan;14(1):518–533. doi: 10.1128/mcb.14.1.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kowalczykowski S. C., Paul L. S., Lonberg N., Newport J. W., McSwiggen J. A., von Hippel P. H. Cooperative and noncooperative binding of protein ligands to nucleic acid lattices: experimental approaches to the determination of thermodynamic parameters. Biochemistry. 1986 Mar 25;25(6):1226–1240. doi: 10.1021/bi00354a006. [DOI] [PubMed] [Google Scholar]
  19. Lothstein L., Arenstorf H. P., Chung S. Y., Walker B. W., Wooley J. C., LeStourgeon W. M. General organization of protein in HeLa 40S nuclear ribonucleoprotein particles. J Cell Biol. 1985 May;100(5):1570–1581. doi: 10.1083/jcb.100.5.1570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McAfee J. G., Shahied-Milam L., Soltaninassab S. R., LeStourgeon W. M. A major determinant of hnRNP C protein binding to RNA is a novel bZIP-like RNA binding domain. RNA. 1996 Nov;2(11):1139–1152. [PMC free article] [PubMed] [Google Scholar]
  21. McAfee J. G., Soltaninassab S. R., Lindsay M. E., LeStourgeon W. M. Proteins C1 and C2 of heterogeneous nuclear ribonucleoprotein complexes bind RNA in a highly cooperative fashion: support for their contiguous deposition on pre-mRNA during transcription. Biochemistry. 1996 Jan 30;35(4):1212–1222. doi: 10.1021/bi951974k. [DOI] [PubMed] [Google Scholar]
  22. McGhee J. D., von Hippel P. H. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol. 1974 Jun 25;86(2):469–489. doi: 10.1016/0022-2836(74)90031-x. [DOI] [PubMed] [Google Scholar]
  23. Moore C. L., Chen J., Whoriskey J. Two proteins crosslinked to RNA containing the adenovirus L3 poly(A) site require the AAUAAA sequence for binding. EMBO J. 1988 Oct;7(10):3159–3169. doi: 10.1002/j.1460-2075.1988.tb03183.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mullen M. P., Smith C. W., Patton J. G., Nadal-Ginard B. Alpha-tropomyosin mutually exclusive exon selection: competition between branchpoint/polypyrimidine tracts determines default exon choice. Genes Dev. 1991 Apr;5(4):642–655. doi: 10.1101/gad.5.4.642. [DOI] [PubMed] [Google Scholar]
  26. Piñol-Roma S., Dreyfuss G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature. 1992 Feb 20;355(6362):730–732. doi: 10.1038/355730a0. [DOI] [PubMed] [Google Scholar]
  27. Rech J. E., Huang M. H., LeStourgeon W. M., Flicker P. F. An ultrastructural characterization of in vitro-assembled hnRNP C protein-RNA complexes. J Struct Biol. 1995 Mar-Apr;114(2):84–92. doi: 10.1006/jsbi.1995.1008. [DOI] [PubMed] [Google Scholar]
  28. Santoro B., De Gregorio E., Caffarelli E., Bozzoni I. RNA-protein interactions in the nuclei of Xenopus oocytes: complex formation and processing activity on the regulatory intron of ribosomal protein gene L1. Mol Cell Biol. 1994 Oct;14(10):6975–6982. doi: 10.1128/mcb.14.10.6975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Singh R., Valcárcel J., Green M. R. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science. 1995 May 26;268(5214):1173–1176. doi: 10.1126/science.7761834. [DOI] [PubMed] [Google Scholar]
  30. Smith K. C., Aplin R. T. A mixed photoproduct of uracil and cysteine (5-S-cysteine-6-hydrouracil). A possible model for the in vivo cross-linking of deoxyribonucleic acid and protein by ultraviolet light. Biochemistry. 1966 Jun;5(6):2125–2130. doi: 10.1021/bi00870a046. [DOI] [PubMed] [Google Scholar]
  31. Smith K. C. Photochemical addition of amino acids to 14C-uracil. Biochem Biophys Res Commun. 1969 Feb 7;34(3):354–357. doi: 10.1016/0006-291x(69)90840-7. [DOI] [PubMed] [Google Scholar]
  32. Swanson M. S., Dreyfuss G. Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities. Mol Cell Biol. 1988 May;8(5):2237–2241. doi: 10.1128/mcb.8.5.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Swanson M. S., Dreyfuss G. RNA binding specificity of hnRNP proteins: a subset bind to the 3' end of introns. EMBO J. 1988 Nov;7(11):3519–3529. doi: 10.1002/j.1460-2075.1988.tb03228.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sébillon P., Beldjord C., Kaplan J. C., Brody E., Marie J. A T to G mutation in the polypyrimidine tract of the second intron of the human beta-globin gene reduces in vitro splicing efficiency: evidence for an increased hnRNP C interaction. Nucleic Acids Res. 1995 Sep 11;23(17):3419–3425. doi: 10.1093/nar/23.17.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Temsamani J., Pederson T. The C-group heterogeneous nuclear ribonucleoprotein proteins bind to the 5' stem-loop of the U2 small nuclear ribonucleoprotein particle. J Biol Chem. 1996 Oct 4;271(40):24922–24926. doi: 10.1074/jbc.271.40.24922. [DOI] [PubMed] [Google Scholar]
  36. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
  37. Wilk H. E., Angeli G., Schäfer K. P. In vitro reconstitution of 35S ribonucleoprotein complexes. Biochemistry. 1983 Sep 13;22(19):4592–4600. doi: 10.1021/bi00288a038. [DOI] [PubMed] [Google Scholar]
  38. Wilusz J., Feig D. I., Shenk T. The C proteins of heterogeneous nuclear ribonucleoprotein complexes interact with RNA sequences downstream of polyadenylation cleavage sites. Mol Cell Biol. 1988 Oct;8(10):4477–4483. doi: 10.1128/mcb.8.10.4477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wilusz J., Shenk T. A uridylate tract mediates efficient heterogeneous nuclear ribonucleoprotein C protein-RNA cross-linking and functionally substitutes for the downstream element of the polyadenylation signal. Mol Cell Biol. 1990 Dec;10(12):6397–6407. doi: 10.1128/mcb.10.12.6397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zaidi S. H., Malter J. S. Nucleolin and heterogeneous nuclear ribonucleoprotein C proteins specifically interact with the 3'-untranslated region of amyloid protein precursor mRNA. J Biol Chem. 1995 Jul 21;270(29):17292–17298. doi: 10.1074/jbc.270.29.17292. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES