Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):968–981. doi: 10.1016/S0006-3495(98)77585-X

NMR structure refinement and dynamics of the K+-[d(G3T4G3)]2 quadruplex via particle mesh Ewald molecular dynamics simulations.

G D Strahan 1, M A Keniry 1, R H Shafer 1
PMCID: PMC1299770  PMID: 9675197

Abstract

The solution structure and dynamical properties of the potassium-stabilized, hairpin dimer quadruplex formed by the oligonucleotide d(G3T4G3) have been elucidated by a combination of high-resolution NMR and molecular dynamics simulations. Refinement calculations were carried out both in vacuo, without internally coordinated K+ cations, and in explicit water, with internally coordinated K+ cations. In the latter case, the electrostatic interactions were calculated using the particle mesh Ewald (PME) method. The NMR restraints indicate that the K+ quadruplex has a folding arrangement similar to that formed by the same oligonucleotide in the presence of sodium, but with significant local differences. Unlike the Na+ quadruplex, the thymine loops found in K+ exhibit considerable flexibility, and appear to interconvert between two preferred conformations. Furthermore, the NMR evidence points toward K+-stabilized guanine quartets of slightly larger diameter relative to the Na+-stabilized structure. The characteristics of the quartet stem are greatly affected by the modeling technique employed: caged cations alter the size and symmetry of the quartets, and explicit water molecules form hydration spines within the grooves. These results provide insight into those factors that determine the overall stability of hairpin dimer quadruplexes and the effects of different cations in modulating the relative stability of the dimeric hairpin and linear, four-stranded, quadruplex forms.

Full Text

The Full Text of this article is available as a PDF (180.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balagurumoorthy P., Brahmachari S. K., Mohanty D., Bansal M., Sasisekharan V. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res. 1992 Aug 11;20(15):4061–4067. doi: 10.1093/nar/20.15.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bock L. C., Griffin L. C., Latham J. A., Vermaas E. H., Toole J. J. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature. 1992 Feb 6;355(6360):564–566. doi: 10.1038/355564a0. [DOI] [PubMed] [Google Scholar]
  3. Brahms S., Fritsch V., Brahms J. G., Westhof E. Investigations on the dynamic structures of adenine- and thymine-containing DNA. J Mol Biol. 1992 Jan 20;223(2):455–476. doi: 10.1016/0022-2836(92)90664-6. [DOI] [PubMed] [Google Scholar]
  4. Cherepanov P., Esté J. A., Rando R. F., Ojwang J. O., Reekmans G., Steinfeld R., David G., De Clercq E., Debyser Z. Mode of interaction of G-quartets with the integrase of human immunodeficiency virus type 1. Mol Pharmacol. 1997 Nov;52(5):771–780. doi: 10.1124/mol.52.5.771. [DOI] [PubMed] [Google Scholar]
  5. Deng H., Braunlin W. H. Kinetics of sodium ion binding to DNA quadruplexes. J Mol Biol. 1996 Jan 26;255(3):476–483. doi: 10.1006/jmbi.1996.0039. [DOI] [PubMed] [Google Scholar]
  6. Guschlbauer W., Chantot J. F., Thiele D. Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomer DNA. J Biomol Struct Dyn. 1990 Dec;8(3):491–511. doi: 10.1080/07391102.1990.10507825. [DOI] [PubMed] [Google Scholar]
  7. Haasnoot C. A., Hilbers C. W., van der Marel G. A., van Boom J. H., Singh U. C., Pattabiraman N., Kollman P. A. On loop folding in nucleic acid hairpin-type structures. J Biomol Struct Dyn. 1986 Apr;3(5):843–857. doi: 10.1080/07391102.1986.10508468. [DOI] [PubMed] [Google Scholar]
  8. Hardin C. C., Corregan M. J., Lieberman D. V., Brown B. A., 2nd Allosteric interactions between DNA strands and monovalent cations in DNA quadruplex assembly: thermodynamic evidence for three linked association pathways. Biochemistry. 1997 Dec 9;36(49):15428–15450. doi: 10.1021/bi970488p. [DOI] [PubMed] [Google Scholar]
  9. Hardin C. C., Henderson E., Watson T., Prosser J. K. Monovalent cation induced structural transitions in telomeric DNAs: G-DNA folding intermediates. Biochemistry. 1991 May 7;30(18):4460–4472. doi: 10.1021/bi00232a013. [DOI] [PubMed] [Google Scholar]
  10. Hardin C. C., Watson T., Corregan M., Bailey C. Cation-dependent transition between the quadruplex and Watson-Crick hairpin forms of d(CGCG3GCG). Biochemistry. 1992 Jan 28;31(3):833–841. doi: 10.1021/bi00118a028. [DOI] [PubMed] [Google Scholar]
  11. Hud N. V., Smith F. W., Anet F. A., Feigon J. The selectivity for K+ versus Na+ in DNA quadruplexes is dominated by relative free energies of hydration: a thermodynamic analysis by 1H NMR. Biochemistry. 1996 Dec 3;35(48):15383–15390. doi: 10.1021/bi9620565. [DOI] [PubMed] [Google Scholar]
  12. Kang C., Zhang X., Ratliff R., Moyzis R., Rich A. Crystal structure of four-stranded Oxytricha telomeric DNA. Nature. 1992 Mar 12;356(6365):126–131. doi: 10.1038/356126a0. [DOI] [PubMed] [Google Scholar]
  13. Keniry M. A., Owen E. A., Shafer R. H. The contribution of thymine-thymine interactions to the stability of folded dimeric quadruplexes. Nucleic Acids Res. 1997 Nov 1;25(21):4389–4392. doi: 10.1093/nar/25.21.4389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keniry M. A., Strahan G. D., Owen E. A., Shafer R. H. Solution structure of the Na+ form of the dimeric guanine quadruplex [d(G3T4G3)]2. Eur J Biochem. 1995 Oct 15;233(2):631–643. doi: 10.1111/j.1432-1033.1995.631_2.x. [DOI] [PubMed] [Google Scholar]
  15. Kim S. G., Lin L. J., Reid B. R. Determination of nucleic acid backbone conformation by 1H NMR. Biochemistry. 1992 Apr 14;31(14):3564–3574. doi: 10.1021/bi00129a003. [DOI] [PubMed] [Google Scholar]
  16. Laughlan G., Murchie A. I., Norman D. G., Moore M. H., Moody P. C., Lilley D. M., Luisi B. The high-resolution crystal structure of a parallel-stranded guanine tetraplex. Science. 1994 Jul 22;265(5171):520–524. doi: 10.1126/science.8036494. [DOI] [PubMed] [Google Scholar]
  17. Marion D., Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983 Jun 29;113(3):967–974. doi: 10.1016/0006-291x(83)91093-8. [DOI] [PubMed] [Google Scholar]
  18. Mazumder A., Neamati N., Ojwang J. O., Sunder S., Rando R. F., Pommier Y. Inhibition of the human immunodeficiency virus type 1 integrase by guanosine quartet structures. Biochemistry. 1996 Oct 29;35(43):13762–13771. doi: 10.1021/bi960541u. [DOI] [PubMed] [Google Scholar]
  19. Padmanabhan K., Padmanabhan K. P., Ferrara J. D., Sadler J. E., Tulinsky A. The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem. 1993 Aug 25;268(24):17651–17654. doi: 10.2210/pdb1hut/pdb. [DOI] [PubMed] [Google Scholar]
  20. Padmanabhan K., Tulinsky A. An ambiguous structure of a DNA 15-mer thrombin complex. Acta Crystallogr D Biol Crystallogr. 1996 Mar 1;52(Pt 2):272–282. doi: 10.1107/S0907444995013977. [DOI] [PubMed] [Google Scholar]
  21. Phillips K., Dauter Z., Murchie A. I., Lilley D. M., Luisi B. The crystal structure of a parallel-stranded guanine tetraplex at 0.95 A resolution. J Mol Biol. 1997 Oct 17;273(1):171–182. doi: 10.1006/jmbi.1997.1292. [DOI] [PubMed] [Google Scholar]
  22. Scaria P. V., Shire S. J., Shafer R. H. Quadruplex structure of d(G3T4G3) stabilized by K+ or Na+ is an asymmetric hairpin dimer. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10336–10340. doi: 10.1073/pnas.89.21.10336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schmitz U., James T. L. How to generate accurate solution structures of double-helical nucleic acid fragments using nuclear magnetic resonance and restrained molecular dynamics. Methods Enzymol. 1995;261:3–44. doi: 10.1016/s0076-6879(95)61003-0. [DOI] [PubMed] [Google Scholar]
  24. Schultze P., Smith F. W., Feigon J. Refined solution structure of the dimeric quadruplex formed from the Oxytricha telomeric oligonucleotide d(GGGGTTTTGGGG). Structure. 1994 Mar 15;2(3):221–233. doi: 10.1016/s0969-2126(00)00023-x. [DOI] [PubMed] [Google Scholar]
  25. Smith F. W., Lau F. W., Feigon J. d(G3T4G3) forms an asymmetric diagonally looped dimeric quadruplex with guanosine 5'-syn-syn-anti and 5'-syn-anti-anti N-glycosidic conformations. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10546–10550. doi: 10.1073/pnas.91.22.10546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Strahan G. D., Shafer R. H., Keniry M. A. Structural properties of the [d(G3T4G3)]2 quadruplex: evidence for sequential syn-syn deoxyguanosines. Nucleic Acids Res. 1994 Dec 11;22(24):5447–5455. doi: 10.1093/nar/22.24.5447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sundquist W. I., Klug A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature. 1989 Dec 14;342(6251):825–829. doi: 10.1038/342825a0. [DOI] [PubMed] [Google Scholar]
  28. Ulyanov N. B., Schmitz U., Kumar A., James T. L. Probability assessment of conformational ensembles: sugar repuckering in a DNA duplex in solution. Biophys J. 1995 Jan;68(1):13–24. doi: 10.1016/S0006-3495(95)80181-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Williamson J. R. G-quartet structures in telomeric DNA. Annu Rev Biophys Biomol Struct. 1994;23:703–730. doi: 10.1146/annurev.bb.23.060194.003415. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES