Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Aug;75(2):1117–1130. doi: 10.1016/S0006-3495(98)77601-5

Oligomeric state of human erythrocyte band 3 measured by fluorescence resonance energy homotransfer.

S M Blackman 1, D W Piston 1, A H Beth 1
PMCID: PMC1299786  PMID: 9675213

Abstract

The oligomeric state of the erythrocyte anion exchange protein, band 3, has been assayed by resonance energy homotransfer. Homotransfer between oligomeric subunits, labeled with eosin-5-maleimide at Lys430 in the transmembrane domain, has been demonstrated by steady-state and time-resolved fluorescence spectroscopy, and is readily observed by its depolarization of the eosin fluorescence. Polarized fluorescence measurements of HPLC-purified band 3 oligomers indicate that eosin homotransfer increases progressively with increasing species size. This shows that homotransfer also occurs between labeled band 3 dimers as well as within the dimers, making fluorescence anisotropy measurements sensitive to band 3 self-association. Treatment of ghost membranes with either Zn2+ or melittin, agents that cluster band 3, significantly decreases the anisotropy as a result of the increased homotransfer within the band 3 clusters. By comparison with the anisotropy of species of known oligomeric state, the anisotropy of erythrocyte ghost membranes at 37 degrees C is consistent with dimeric and/or tetrameric band 3, and does not require postulation of a fraction of large clusters. Proteolytic removal of the cytoplasmic domain of band 3, which significantly increases the rotational mobility of the transmembrane domain, does not affect its oligomeric state, as reported by eosin homotransfer. These results support a model in which interaction with the membrane skeleton restricts the mobility of band 3 without significantly altering its self-association state.

Full Text

The Full Text of this article is available as a PDF (181.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastiaens P. I., van Hoek A., Benen J. A., Brochon J. C., Visser A. J. Conformational dynamics and intersubunit energy transfer in wild-type and mutant lipoamide dehydrogenase from Azotobacter vinelandii. A multidimensional time-resolved polarized fluorescence study. Biophys J. 1992 Sep;63(3):839–853. doi: 10.1016/S0006-3495(92)81659-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bennett V., Stenbuck P. J. The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membranes. Nature. 1979 Aug 9;280(5722):468–473. doi: 10.1038/280468a0. [DOI] [PubMed] [Google Scholar]
  3. Benz R., Tosteson M. T., Schubert D. Formation and properties of tetramers of band 3 protein from human erythrocyte membranes in planar lipid bilayers. Biochim Biophys Acta. 1984 Sep 5;775(3):347–355. doi: 10.1016/0005-2736(84)90190-1. [DOI] [PubMed] [Google Scholar]
  4. Bicknese S., Rossi M., Thevenin B., Shohet S. B., Verkman A. S. Anisotropy decay measurement of segmental dynamics of the anion binding domain in erythrocyte band 3. Biochemistry. 1995 Aug 22;34(33):10645–10651. doi: 10.1021/bi00033a040. [DOI] [PubMed] [Google Scholar]
  5. Blackman S. M., Cobb C. E., Beth A. H., Piston D. W. The orientation of eosin-5-maleimide on human erythrocyte band 3 measured by fluorescence polarization microscopy. Biophys J. 1996 Jul;71(1):194–208. doi: 10.1016/S0006-3495(96)79216-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casey J. R., Lieberman D. M., Reithmeier R. A. Purification and characterization of band 3 protein. Methods Enzymol. 1989;173:494–512. doi: 10.1016/s0076-6879(89)73034-2. [DOI] [PubMed] [Google Scholar]
  7. Casey J. R., Reithmeier R. A. Analysis of the oligomeric state of Band 3, the anion transport protein of the human erythrocyte membrane, by size exclusion high performance liquid chromatography. Oligomeric stability and origin of heterogeneity. J Biol Chem. 1991 Aug 25;266(24):15726–15737. [PubMed] [Google Scholar]
  8. Che A., Cherry R. J. Loss of rotational mobility of band 3 proteins in human erythrocyte membranes induced by antibodies to glycophorin A. Biophys J. 1995 May;68(5):1881–1887. doi: 10.1016/S0006-3495(95)80365-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Che A., Morrison I. E., Pan R., Cherry R. J. Restriction by ankyrin of band 3 rotational mobility in human erythrocyte membranes and reconstituted lipid vesicles. Biochemistry. 1997 Aug 5;36(31):9588–9595. doi: 10.1021/bi971074z. [DOI] [PubMed] [Google Scholar]
  10. Cherry R. J., Bürkli A., Busslinger M., Schneider G., Parish G. R. Rotational diffusion of band 3 proteins in the human erythrocyte membrane. Nature. 1976 Sep 30;263(5576):389–393. doi: 10.1038/263389a0. [DOI] [PubMed] [Google Scholar]
  11. Clague M. J., Cherry R. J. A comparative study of band 3 aggregation in erythrocyte membranes by melittin and other cationic agents. Biochim Biophys Acta. 1989 Mar 27;980(1):93–99. doi: 10.1016/0005-2736(89)90204-6. [DOI] [PubMed] [Google Scholar]
  12. Clague M. J., Harrison J. P., Cherry R. J. Cytoskeletal restraints of band 3 rotational mobility in human erythrocyte membranes. Biochim Biophys Acta. 1989 May 19;981(1):43–50. doi: 10.1016/0005-2736(89)90080-1. [DOI] [PubMed] [Google Scholar]
  13. Cobb C. E., Beth A. H. Identification of the eosinyl-5-maleimide reaction site on the human erythrocyte anion-exchange protein: overlap with the reaction sites of other chemical probes. Biochemistry. 1990 Sep 11;29(36):8283–8290. doi: 10.1021/bi00488a012. [DOI] [PubMed] [Google Scholar]
  14. Cobb C. E., Juliao S., Balasubramanian K., Staros J. V., Beth A. H. Effects of diethyl ether on membrane lipid ordering and on rotational dynamics of the anion exchange protein in intact human erythrocytes: correlations with anion exchange function. Biochemistry. 1990 Dec 4;29(48):10799–10806. doi: 10.1021/bi00500a012. [DOI] [PubMed] [Google Scholar]
  15. Corbett J. D., Golan D. E. Band 3 and glycophorin are progressively aggregated in density-fractionated sickle and normal red blood cells. Evidence from rotational and lateral mobility studies. J Clin Invest. 1993 Jan;91(1):208–217. doi: 10.1172/JCI116172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cuppoletti J., Goldinger J., Kang B., Jo I., Berenski C., Jung C. Y. Anion carrier in the human erythrocyte exists as a dimer. J Biol Chem. 1985 Dec 15;260(29):15714–15717. [PubMed] [Google Scholar]
  17. Dissing S., Jesaitis A. J., Fortes P. A. Fluorescence labeling of the human erythrocyte anion transport system. Biochim Biophys Acta. 1979 May 3;553(1):66–83. doi: 10.1016/0005-2736(79)90031-2. [DOI] [PubMed] [Google Scholar]
  18. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  19. Golan D. E., Corbett J. D., Korsgren C., Thatte H. S., Hayette S., Yawata Y., Cohen C. M. Control of band 3 lateral and rotational mobility by band 4.2 in intact erythrocytes: release of band 3 oligomers from low-affinity binding sites. Biophys J. 1996 Mar;70(3):1534–1542. doi: 10.1016/S0006-3495(96)79717-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hui S. W., Stewart C. M., Cherry R. J. Electron microscopic observation of the aggregation of membrane proteins in human erythrocyte by melittin. Biochim Biophys Acta. 1990 Apr 30;1023(3):335–340. doi: 10.1016/0005-2736(90)90124-7. [DOI] [PubMed] [Google Scholar]
  21. Hustedt E. J., Beth A. H. Analysis of saturation transfer electron paramagnetic resonance spectra of a spin-labeled integral membrane protein, band 3, in terms of the uniaxial rotational diffusion model. Biophys J. 1995 Oct;69(4):1409–1423. doi: 10.1016/S0006-3495(95)80010-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hustedt E. J., Beth A. H. Determination of the orientation of a band 3 affinity spin-label relative to the membrane normal axis of the human erythrocyte. Biochemistry. 1996 May 28;35(21):6944–6954. doi: 10.1021/bi9601518. [DOI] [PubMed] [Google Scholar]
  23. Jennings M. L., Nicknish J. S. Localization of a site of intermolecular cross-linking in human red blood cell band 3 protein. J Biol Chem. 1985 May 10;260(9):5472–5479. [PubMed] [Google Scholar]
  24. Jennings M. L. Oligomeric structure and the anion transport function of human erythrocyte band 3 protein. J Membr Biol. 1984;80(2):105–117. doi: 10.1007/BF01868768. [DOI] [PubMed] [Google Scholar]
  25. Jähnig F. The shape of a membrane protein derived from rotational diffusion. Eur Biophys J. 1986;14(1):63–64. doi: 10.1007/BF00260404. [DOI] [PubMed] [Google Scholar]
  26. Karolin J., Fa M., Wilczynska M., Ny T., Johansson L. B. Donor-donor energy migration for determining intramolecular distances in proteins: I. Application of a model to the latent plasminogen activator inhibitor-1 (PAI-1). Biophys J. 1998 Jan;74(1):11–21. doi: 10.1016/S0006-3495(98)77762-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Liu S. Q., Knauf P. A. Lys-430, site of irreversible inhibition of band 3 Cl- flux by eosin-5-maleimide, is not at the transport site. Am J Physiol. 1993 May;264(5 Pt 1):C1155–C1164. doi: 10.1152/ajpcell.1993.264.5.C1155. [DOI] [PubMed] [Google Scholar]
  29. Macara I. G., Cantley L. C. Interactions between transport inhibitors at the anion binding sites of the band 3 dimer. Biochemistry. 1981 Sep 1;20(18):5095–5105. doi: 10.1021/bi00521a001. [DOI] [PubMed] [Google Scholar]
  30. Macara I. G., Kuo S., Cantley L. C. Evidence that inhibitors of anion exchange induce a transmembrane conformational change in band 3. J Biol Chem. 1983 Feb 10;258(3):1785–1792. [PubMed] [Google Scholar]
  31. Matayoshi E. D., Jovin T. M. Rotational diffusion of band 3 in erythrocyte membranes. 1. Comparison of ghosts and intact cells. Biochemistry. 1991 Apr 9;30(14):3527–3538. doi: 10.1021/bi00228a025. [DOI] [PubMed] [Google Scholar]
  32. McPherson R. A., Sawyer W. H., Tilley L. Band 3 mobility in camelid elliptocytes: implications for erythrocyte shape. Biochemistry. 1993 Jul 6;32(26):6696–6702. doi: 10.1021/bi00077a024. [DOI] [PubMed] [Google Scholar]
  33. McPherson R. A., Sawyer W. H., Tilley L. Rotational diffusion of the erythrocyte integral membrane protein band 3: effect of hemichrome binding. Biochemistry. 1992 Jan 21;31(2):512–518. doi: 10.1021/bi00117a030. [DOI] [PubMed] [Google Scholar]
  34. Michaely P., Bennett V. The ANK repeats of erythrocyte ankyrin form two distinct but cooperative binding sites for the erythrocyte anion exchanger. J Biol Chem. 1995 Sep 15;270(37):22050–22057. doi: 10.1074/jbc.270.37.22050. [DOI] [PubMed] [Google Scholar]
  35. Nigg E. A., Cherry R. J. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4702–4706. doi: 10.1073/pnas.77.8.4702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nigg E. A., Cherry R. J. Influence of temperature and cholesterol on the rotational diffusion of band 3 in the human erythrocyte membrane. Biochemistry. 1979 Aug 7;18(16):3457–3465. doi: 10.1021/bi00583a004. [DOI] [PubMed] [Google Scholar]
  37. Nigg E., Cherry R. J. Dimeric association of band 3 in the erythrocyte membrane demonstrated by protein diffusion measurements. Nature. 1979 Feb 8;277(5696):493–494. doi: 10.1038/277493a0. [DOI] [PubMed] [Google Scholar]
  38. Palek J., Lambert S. Genetics of the red cell membrane skeleton. Semin Hematol. 1990 Oct;27(4):290–332. [PubMed] [Google Scholar]
  39. Peters L. L., Shivdasani R. A., Liu S. C., Hanspal M., John K. M., Gonzalez J. M., Brugnara C., Gwynn B., Mohandas N., Alper S. L. Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell. 1996 Sep 20;86(6):917–927. doi: 10.1016/s0092-8674(00)80167-1. [DOI] [PubMed] [Google Scholar]
  40. Pinder J. C., Pekrun A., Maggs A. M., Brain A. P., Gratzer W. B. Association state of human red blood cell band 3 and its interaction with ankyrin. Blood. 1995 May 15;85(10):2951–2961. [PubMed] [Google Scholar]
  41. Rodgers W., Glaser M. Distributions of proteins and lipids in the erythrocyte membrane. Biochemistry. 1993 Nov 30;32(47):12591–12598. doi: 10.1021/bi00210a007. [DOI] [PubMed] [Google Scholar]
  42. Runnels L. W., Scarlata S. F. Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J. 1995 Oct;69(4):1569–1583. doi: 10.1016/S0006-3495(95)80030-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Rybicki A. C., Schwartz R. S., Hustedt E. J., Cobb C. E. Increased rotational mobility and extractability of band 3 from protein 4.2-deficient erythrocyte membranes: evidence of a role for protein 4.2 in strengthening the band 3-cytoskeleton linkage. Blood. 1996 Oct 1;88(7):2745–2753. [PubMed] [Google Scholar]
  44. Saffman P. G., Delbrück M. Brownian motion in biological membranes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3111–3113. doi: 10.1073/pnas.72.8.3111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Schuck P., Legrum B., Passow H., Schubert D. The influence of two anion-transport inhibitors, 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonate and 4,4'-dibenzoylstilbene-2,2'-disulfonate, on the self-association of erythrocyte band 3 protein. Eur J Biochem. 1995 Jun 1;230(2):806–812. doi: 10.1111/j.1432-1033.1995.tb20624.x. [DOI] [PubMed] [Google Scholar]
  46. Scothorn D. J., Wojcicki W. E., Hustedt E. J., Beth A. H., Cobb C. E. Synthesis and characterization of a novel spin-labeled affinity probe of human erythrocyte band 3: characteristics of the stilbenedisulfonate binding site. Biochemistry. 1996 May 28;35(21):6931–6943. doi: 10.1021/bi960150f. [DOI] [PubMed] [Google Scholar]
  47. Shi Y., Karon B. S., Kutchai H., Thomas D. D. Phospholamban-dependent effects of C12E8 on calcium transport and molecular dynamics in cardiac sarcoplasmic reticulum. Biochemistry. 1996 Oct 15;35(41):13393–13399. doi: 10.1021/bi9614085. [DOI] [PubMed] [Google Scholar]
  48. Southgate C. D., Chishti A. H., Mitchell B., Yi S. J., Palek J. Targeted disruption of the murine erythroid band 3 gene results in spherocytosis and severe haemolytic anaemia despite a normal membrane skeleton. Nat Genet. 1996 Oct;14(2):227–230. doi: 10.1038/ng1096-227. [DOI] [PubMed] [Google Scholar]
  49. Staros J. V., Kakkad B. P. Cross-linking and chymotryptic digestion of the extracytoplasmic domain of the anion exchange channel in intact human erythrocytes. J Membr Biol. 1983;74(3):247–254. doi: 10.1007/BF02332127. [DOI] [PubMed] [Google Scholar]
  50. Steck T. L. Cross-linking the major proteins of the isolated erythrocyte membrane. J Mol Biol. 1972 May 14;66(2):295–305. doi: 10.1016/0022-2836(72)90481-0. [DOI] [PubMed] [Google Scholar]
  51. Thevenin B. J., Low P. S. Kinetics and regulation of the ankyrin-band 3 interaction of the human red blood cell membrane. J Biol Chem. 1990 Sep 25;265(27):16166–16172. [PubMed] [Google Scholar]
  52. Tsuji A., Kawasaki K., Ohnishi S., Merkle H., Kusumi A. Regulation of band 3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork. Biochemistry. 1988 Sep 20;27(19):7447–7452. doi: 10.1021/bi00419a041. [DOI] [PubMed] [Google Scholar]
  53. Turrini F., Arese P., Yuan J., Low P. S. Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J Biol Chem. 1991 Dec 15;266(35):23611–23617. [PubMed] [Google Scholar]
  54. WEBER G. Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan and related compounds. Biochem J. 1960 May;75:335–345. doi: 10.1042/bj0750335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wang D. N. Band 3 protein: structure, flexibility and function. FEBS Lett. 1994 Jun 6;346(1):26–31. doi: 10.1016/0014-5793(94)00468-4. [DOI] [PubMed] [Google Scholar]
  56. Wang D. N., Kühlbrandt W., Sarabia V. E., Reithmeier R. A. Two-dimensional structure of the membrane domain of human band 3, the anion transport protein of the erythrocyte membrane. EMBO J. 1993 Jun;12(6):2233–2239. doi: 10.1002/j.1460-2075.1993.tb05876.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Wang D. N., Sarabia V. E., Reithmeier R. A., Kühlbrandt W. Three-dimensional map of the dimeric membrane domain of the human erythrocyte anion exchanger, Band 3. EMBO J. 1994 Jul 15;13(14):3230–3235. doi: 10.1002/j.1460-2075.1994.tb06624.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wolber P. K., Hudson B. S. An analytic solution to the Förster energy transfer problem in two dimensions. Biophys J. 1979 Nov;28(2):197–210. doi: 10.1016/S0006-3495(79)85171-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wyatt K., Cherry R. J. Both ankyrin and band 4.1 are required to restrict the rotational mobility of band 3 in the human erythrocyte membrane. Biochim Biophys Acta. 1992 Jan 31;1103(2):327–330. doi: 10.1016/0005-2736(92)90104-t. [DOI] [PubMed] [Google Scholar]
  60. Yi S. J., Liu S. C., Derick L. H., Murray J., Barker J. E., Cho M. R., Palek J., Golan D. E. Red cell membranes of ankyrin-deficient nb/nb mice lack band 3 tetramers but contain normal membrane skeletons. Biochemistry. 1997 Aug 5;36(31):9596–9604. doi: 10.1021/bi9704966. [DOI] [PubMed] [Google Scholar]
  61. Zidovetzki R., Johnson D. A., Arndt-Jovin D. J., Jovin T. M. Rotational mobility of high-affinity epidermal growth factor receptors on the surface of living A431 cells. Biochemistry. 1991 Jun 25;30(25):6162–6166. doi: 10.1021/bi00239a012. [DOI] [PubMed] [Google Scholar]
  62. Zimet D. B., Thevenin B. J., Verkman A. S., Shohet S. B., Abney J. R. Calculation of resonance energy transfer in crowded biological membranes. Biophys J. 1995 Apr;68(4):1592–1603. doi: 10.1016/S0006-3495(95)80332-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES