Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1998 Sep 15;17(18):5334–5348. doi: 10.1093/emboj/17.18.5334

Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains.

C Montixi 1, C Langlet 1, A M Bernard 1, J Thimonier 1, C Dubois 1, M A Wurbel 1, J P Chauvin 1, M Pierres 1, H T He 1
PMCID: PMC1170860  PMID: 9736612

Abstract

T-cell receptors (TCRs) upon binding to peptide-MHC ligands transduce signals in T lymphocytes. Tyrosine phosphorylations in the cytoplasmic domains of the CD3 (gammadeltaepsilon) and zeta subunits of the TCR complex by Src family kinases initiate the signaling cascades via docking and activation of ZAP-70 kinase and other signaling components. We examined the role of the low-density detergent-insoluble membranes (DIMs) in TCR signaling. Using mouse thymocytes as a model, we characterized the structural organization of DIMs in detail. We then demonstrated that TCR engagement triggered an immediate increase in the amount of TCR/CD3 present in DIMs, which directly involves the engaged receptor complexes. TCR/CD3 recruitment is accompanied by the accumulation of a series of prominent tyrosine-phosphorylated substrates and by an increase of the Lck activity in DIMs. Upon TCR stimulation, the DIM-associated receptor complexes are highly enriched in the hyperphosphorylated p23 zeta chains, contain most of the TCR/CD3-associated, phosphorylation-activated ZAP-70 kinases and seem to integrate into higher order, multiple tyrosine-phosphorylated substrate-containing protein complexes. The TCR/CD3 recruitment was found to depend on the activity of Src family kinases. We thus provide the first demonstration of recuitment of TCR/CD3 to DIMs upon receptor stimulation and propose it as a mechanism whereby TCR engagement is coupled to downstream signaling cascades.

Full Text

The Full Text of this article is available as a PDF (529.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. N., Brown D. A., London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry. 1997 Sep 9;36(36):10944–10953. doi: 10.1021/bi971167g. [DOI] [PubMed] [Google Scholar]
  2. Anderson R. G. Caveolae: where incoming and outgoing messengers meet. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10909–10913. doi: 10.1073/pnas.90.23.10909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. August A., Dupont B. Association between mitogen-activated protein kinase and the zeta chain of the T cell receptor (TcR) with the SH2,3 domain of p56lck. Differential regulation by TcR cross-linking. J Biol Chem. 1996 Apr 26;271(17):10054–10059. doi: 10.1074/jbc.271.17.10054. [DOI] [PubMed] [Google Scholar]
  4. Bergelson L. D. Serum gangliosides as endogenous immunomodulators. Immunol Today. 1995 Oct;16(10):483–486. doi: 10.1016/0167-5699(95)80032-8. [DOI] [PubMed] [Google Scholar]
  5. Bohuslav J., Cinek T., Horejsí V. Large, detergent-resistant complexes containing murine antigens Thy-1 and Ly-6 and protein tyrosine kinase p56lck. Eur J Immunol. 1993 Apr;23(4):825–831. doi: 10.1002/eji.1830230409. [DOI] [PubMed] [Google Scholar]
  6. Brown D. A., London E. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun. 1997 Nov 7;240(1):1–7. doi: 10.1006/bbrc.1997.7575. [DOI] [PubMed] [Google Scholar]
  7. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  8. Cantrell D. T cell antigen receptor signal transduction pathways. Annu Rev Immunol. 1996;14:259–274. doi: 10.1146/annurev.immunol.14.1.259. [DOI] [PubMed] [Google Scholar]
  9. Caplan S., Baniyash M. Normal T cells express two T cell antigen receptor populations, one of which is linked to the cytoskeleton via zeta chain and displays a unique activation-dependent phosphorylation pattern. J Biol Chem. 1996 Aug 23;271(34):20705–20712. doi: 10.1074/jbc.271.34.20705. [DOI] [PubMed] [Google Scholar]
  10. Cerneus D. P., Ueffing E., Posthuma G., Strous G. J., van der Ende A. Detergent insolubility of alkaline phosphatase during biosynthetic transport and endocytosis. Role of cholesterol. J Biol Chem. 1993 Feb 15;268(5):3150–3155. [PubMed] [Google Scholar]
  11. Cerný J., Stockinger H., Horejsí V. Noncovalent associations of T lymphocyte surface proteins. Eur J Immunol. 1996 Oct;26(10):2335–2343. doi: 10.1002/eji.1830261010. [DOI] [PubMed] [Google Scholar]
  12. Dainiak N. Surface membrane-associated regulation of cell assembly, differentiation, and growth. Blood. 1991 Jul 15;78(2):264–276. [PubMed] [Google Scholar]
  13. Danielsen E. M., van Deurs B. A transferrin-like GPI-linked iron-binding protein in detergent-insoluble noncaveolar microdomains at the apical surface of fetal intestinal epithelial cells. J Cell Biol. 1995 Nov;131(4):939–950. doi: 10.1083/jcb.131.4.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dráberová L., Amoui M., Dráber P. Thy-1-mediated activation of rat mast cells: the role of Thy-1 membrane microdomains. Immunology. 1996 Jan;87(1):141–148. [PMC free article] [PubMed] [Google Scholar]
  15. Dubois C., Hauttecoeur B., Coulon-Morelec M. J., Montarras D., Rampini C., Fiszman M. Y. Changes in ganglioside metabolism during in vitro differentiation of quail embryo myoblasts. Dev Biol. 1984 Oct;105(2):509–517. doi: 10.1016/0012-1606(84)90308-7. [DOI] [PubMed] [Google Scholar]
  16. Dubois C., Manuguerra J. C., Hauttecoeur B., Maze J. Monoclonal antibody A2B5, which detects cell surface antigens, binds to ganglioside GT3 (II3 (NeuAc)3LacCer) and to its 9-O-acetylated derivative. J Biol Chem. 1990 Feb 15;265(5):2797–2803. [PubMed] [Google Scholar]
  17. Edidin M. Patches, posts and fences: proteins and plasma membrane domains. Trends Cell Biol. 1992 Dec;2(12):376–380. doi: 10.1016/0962-8924(92)90050-w. [DOI] [PubMed] [Google Scholar]
  18. Field K. A., Holowka D., Baird B. Compartmentalized activation of the high affinity immunoglobulin E receptor within membrane domains. J Biol Chem. 1997 Feb 14;272(7):4276–4280. doi: 10.1074/jbc.272.7.4276. [DOI] [PubMed] [Google Scholar]
  19. Field K. A., Holowka D., Baird B. Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9201–9205. doi: 10.1073/pnas.92.20.9201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fra A. M., Williamson E., Simons K., Parton R. G. Detergent-insoluble glycolipid microdomains in lymphocytes in the absence of caveolae. J Biol Chem. 1994 Dec 9;269(49):30745–30748. [PubMed] [Google Scholar]
  21. Fujimoto T., Hayashi M., Iwamoto M., Ohno-Iwashita Y. Crosslinked plasmalemmal cholesterol is sequestered to caveolae: analysis with a new cytochemical probe. J Histochem Cytochem. 1997 Sep;45(9):1197–1205. doi: 10.1177/002215549704500903. [DOI] [PubMed] [Google Scholar]
  22. Garcia M., Mirre C., Quaroni A., Reggio H., Le Bivic A. GPI-anchored proteins associate to form microdomains during their intracellular transport in Caco-2 cells. J Cell Sci. 1993 Apr;104(Pt 4):1281–1290. doi: 10.1242/jcs.104.4.1281. [DOI] [PubMed] [Google Scholar]
  23. Germain R. N. T-cell signaling: the importance of receptor clustering. Curr Biol. 1997 Oct 1;7(10):R640–R644. doi: 10.1016/s0960-9822(06)00323-x. [DOI] [PubMed] [Google Scholar]
  24. Grässel S., Röling A., Hasilik A. Immunoprecipitation of labeled antigens with Eupergit C1Z. Anal Biochem. 1989 Jul;180(1):72–78. doi: 10.1016/0003-2697(89)90089-4. [DOI] [PubMed] [Google Scholar]
  25. Hampl J., Chien Y. H., Davis M. M. CD4 augments the response of a T cell to agonist but not to antagonist ligands. Immunity. 1997 Sep;7(3):379–385. doi: 10.1016/s1074-7613(00)80359-3. [DOI] [PubMed] [Google Scholar]
  26. Hanke J. H., Gardner J. P., Dow R. L., Changelian P. S., Brissette W. H., Weringer E. J., Pollok B. A., Connelly P. A. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem. 1996 Jan 12;271(2):695–701. doi: 10.1074/jbc.271.2.695. [DOI] [PubMed] [Google Scholar]
  27. Harder T., Simons K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol. 1997 Aug;9(4):534–542. doi: 10.1016/s0955-0674(97)80030-0. [DOI] [PubMed] [Google Scholar]
  28. Hooper N. M. Membrane biology: do glycolipid microdomains really exist? Curr Biol. 1998 Feb 12;8(4):R114–R116. doi: 10.1016/s0960-9822(98)70984-4. [DOI] [PubMed] [Google Scholar]
  29. Hueber A. O., Bernard A. M., Battari C. L., Marguet D., Massol P., Foa C., Brun N., Garcia S., Stewart C., Pierres M. Thymocytes in Thy-1-/- mice show augmented TCR signaling and impaired differentiation. Curr Biol. 1997 Sep 1;7(9):705–708. doi: 10.1016/s0960-9822(06)00300-9. [DOI] [PubMed] [Google Scholar]
  30. Hueber A. O., Raposo G., Pierres M., He H. T. Thy-1 triggers mouse thymocyte apoptosis through a bcl-2-resistant mechanism. J Exp Med. 1994 Mar 1;179(3):785–796. doi: 10.1084/jem.179.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ilangumaran S., Briol A., Hoessli D. C. Distinct interactions among GPI-anchored, transmembrane and membrane associated intracellular proteins, and sphingolipids in lymphocyte and endothelial cell plasma membranes. Biochim Biophys Acta. 1997 Sep 4;1328(2):227–236. doi: 10.1016/s0005-2736(97)00099-0. [DOI] [PubMed] [Google Scholar]
  32. Kabouridis P. S., Magee A. I., Ley S. C. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J. 1997 Aug 15;16(16):4983–4998. doi: 10.1093/emboj/16.16.4983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Koleske A. J., Baltimore D., Lisanti M. P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1381–1385. doi: 10.1073/pnas.92.5.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Liu P., Ying Y., Anderson R. G. Platelet-derived growth factor activates mitogen-activated protein kinase in isolated caveolae. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13666–13670. doi: 10.1073/pnas.94.25.13666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Luescher I. F., Vivier E., Layer A., Mahiou J., Godeau F., Malissen B., Romero P. CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature. 1995 Jan 26;373(6512):353–356. doi: 10.1038/373353a0. [DOI] [PubMed] [Google Scholar]
  36. Madrenas J., Wange R. L., Wang J. L., Isakov N., Samelson L. E., Germain R. N. Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science. 1995 Jan 27;267(5197):515–518. doi: 10.1126/science.7824949. [DOI] [PubMed] [Google Scholar]
  37. Malissen B., Schmitt-Verhulst A. M. Transmembrane signalling through the T-cell-receptor-CD3 complex. Curr Opin Immunol. 1993 Jun;5(3):324–333. doi: 10.1016/0952-7915(93)90049-x. [DOI] [PubMed] [Google Scholar]
  38. Marano N., Crawford M., Govindan B. Characterization of the detergent insolubility of the T cell receptor for antigen. Mol Immunol. 1997 Aug-Sep;34(12-13):967–976. doi: 10.1016/s0161-5890(97)00079-5. [DOI] [PubMed] [Google Scholar]
  39. Mastick C. C., Saltiel A. R. Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem. 1997 Aug 15;272(33):20706–20714. doi: 10.1074/jbc.272.33.20706. [DOI] [PubMed] [Google Scholar]
  40. Mayor S., Maxfield F. R. Insolubility and redistribution of GPI-anchored proteins at the cell surface after detergent treatment. Mol Biol Cell. 1995 Jul;6(7):929–944. doi: 10.1091/mbc.6.7.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mayor S., Rothberg K. G., Maxfield F. R. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science. 1994 Jun 24;264(5167):1948–1951. doi: 10.1126/science.7516582. [DOI] [PubMed] [Google Scholar]
  42. Metzger H. Transmembrane signaling: the joy of aggregation. J Immunol. 1992 Sep 1;149(5):1477–1487. [PubMed] [Google Scholar]
  43. Nakashima I., Zhang Y. H., Rahman S. M., Yoshida T., Isobe K., Ding L. N., Iwamoto T., Hamaguchi M., Ikezawa H., Taguchi R. Evidence of synergy between Thy-1 and CD3/TCR complex in signal delivery to murine thymocytes for cell death. J Immunol. 1991 Aug 15;147(4):1153–1162. [PubMed] [Google Scholar]
  44. Parolini I., Sargiacomo M., Lisanti M. P., Peschle C. Signal transduction and glycophosphatidylinositol-linked proteins (lyn, lck, CD4, CD45, G proteins, and CD55) selectively localize in Triton-insoluble plasma membrane domains of human leukemic cell lines and normal granulocytes. Blood. 1996 May 1;87(9):3783–3794. [PubMed] [Google Scholar]
  45. Pawson T., Scott J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science. 1997 Dec 19;278(5346):2075–2080. doi: 10.1126/science.278.5346.2075. [DOI] [PubMed] [Google Scholar]
  46. Qian D., Weiss A. T cell antigen receptor signal transduction. Curr Opin Cell Biol. 1997 Apr;9(2):205–212. doi: 10.1016/s0955-0674(97)80064-6. [DOI] [PubMed] [Google Scholar]
  47. Rodgers W., Rose J. K. Exclusion of CD45 inhibits activity of p56lck associated with glycolipid-enriched membrane domains. J Cell Biol. 1996 Dec;135(6 Pt 1):1515–1523. doi: 10.1083/jcb.135.6.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Romagnoli P., Bron C. Phosphatidylinositol-based glycolipid-anchored proteins enhance proximal TCR signaling events. J Immunol. 1997 Jun 15;158(12):5757–5764. [PubMed] [Google Scholar]
  49. Rozdzial M. M., Malissen B., Finkel T. H. Tyrosine-phosphorylated T cell receptor zeta chain associates with the actin cytoskeleton upon activation of mature T lymphocytes. Immunity. 1995 Nov;3(5):623–633. doi: 10.1016/1074-7613(95)90133-7. [DOI] [PubMed] [Google Scholar]
  50. Sargiacomo M., Sudol M., Tang Z., Lisanti M. P. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol. 1993 Aug;122(4):789–807. doi: 10.1083/jcb.122.4.789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Schnitzer J. E., McIntosh D. P., Dvorak A. M., Liu J., Oh P. Separation of caveolae from associated microdomains of GPI-anchored proteins. Science. 1995 Sep 8;269(5229):1435–1439. doi: 10.1126/science.7660128. [DOI] [PubMed] [Google Scholar]
  52. Schroeder R. J., Ahmed S. N., Zhu Y., London E., Brown D. A. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem. 1998 Jan 9;273(2):1150–1157. doi: 10.1074/jbc.273.2.1150. [DOI] [PubMed] [Google Scholar]
  53. Schroeder R., London E., Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12130–12134. doi: 10.1073/pnas.91.25.12130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Shaw A. S., Dustin M. L. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity. 1997 Apr;6(4):361–369. doi: 10.1016/s1074-7613(00)80279-4. [DOI] [PubMed] [Google Scholar]
  55. Sheets E. D., Lee G. M., Simson R., Jacobson K. Transient confinement of a glycosylphosphatidylinositol-anchored protein in the plasma membrane. Biochemistry. 1997 Oct 14;36(41):12449–12458. doi: 10.1021/bi9710939. [DOI] [PubMed] [Google Scholar]
  56. Sheetz M. P. Glycoprotein motility and dynamic domains in fluid plasma membranes. Annu Rev Biophys Biomol Struct. 1993;22:417–431. doi: 10.1146/annurev.bb.22.060193.002221. [DOI] [PubMed] [Google Scholar]
  57. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  58. Sloan-Lancaster J., Shaw A. S., Rothbard J. B., Allen P. M. Partial T cell signaling: altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy. Cell. 1994 Dec 2;79(5):913–922. doi: 10.1016/0092-8674(94)90080-9. [DOI] [PubMed] [Google Scholar]
  59. Smart E. J., Mineo C., Anderson R. G. Clustered folate receptors deliver 5-methyltetrahydrofolate to cytoplasm of MA104 cells. J Cell Biol. 1996 Sep;134(5):1169–1177. doi: 10.1083/jcb.134.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Smith J. A., Tso J. Y., Clark M. R., Cole M. S., Bluestone J. A. Nonmitogenic anti-CD3 monoclonal antibodies deliver a partial T cell receptor signal and induce clonal anergy. J Exp Med. 1997 Apr 21;185(8):1413–1422. doi: 10.1084/jem.185.8.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Stan R. V., Roberts W. G., Predescu D., Ihida K., Saucan L., Ghitescu L., Palade G. E. Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae). Mol Biol Cell. 1997 Apr;8(4):595–605. doi: 10.1091/mbc.8.4.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Stanford W. L., Haque S., Alexander R., Liu X., Latour A. M., Snodgrass H. R., Koller B. H., Flood P. M. Altered proliferative response by T lymphocytes of Ly-6A (Sca-1) null mice. J Exp Med. 1997 Aug 29;186(5):705–717. doi: 10.1084/jem.186.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Stauffer T. P., Meyer T. Compartmentalized IgE receptor-mediated signal transduction in living cells. J Cell Biol. 1997 Dec 15;139(6):1447–1454. doi: 10.1083/jcb.139.6.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Straus D. B., Chan A. C., Patai B., Weiss A. SH2 domain function is essential for the role of the Lck tyrosine kinase in T cell receptor signal transduction. J Biol Chem. 1996 Apr 26;271(17):9976–9981. doi: 10.1074/jbc.271.17.9976. [DOI] [PubMed] [Google Scholar]
  65. Swat W., Ignatowicz L., von Boehmer H., Kisielow P. Clonal deletion of immature CD4+8+ thymocytes in suspension culture by extrathymic antigen-presenting cells. Nature. 1991 May 9;351(6322):150–153. doi: 10.1038/351150a0. [DOI] [PubMed] [Google Scholar]
  66. Thimonier J., Montixi C., Chauvin J. P., He H. T., Rocca-Serra J., Barbet J. Thy-1 immunolabeled thymocyte microdomains studied with the atomic force microscope and the electron microscope. Biophys J. 1997 Sep;73(3):1627–1632. doi: 10.1016/S0006-3495(97)78194-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Thomas P. M., Samelson L. E. The glycophosphatidylinositol-anchored Thy-1 molecule interacts with the p60fyn protein tyrosine kinase in T cells. J Biol Chem. 1992 Jun 15;267(17):12317–12322. [PubMed] [Google Scholar]
  68. Thomas S. M., Brugge J. S. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol. 1997;13:513–609. doi: 10.1146/annurev.cellbio.13.1.513. [DOI] [PubMed] [Google Scholar]
  69. Thome M., Duplay P., Guttinger M., Acuto O. Syk and ZAP-70 mediate recruitment of p56lck/CD4 to the activated T cell receptor/CD3/zeta complex. J Exp Med. 1995 Jun 1;181(6):1997–2006. doi: 10.1084/jem.181.6.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Viola A., Lanzavecchia A. T cell activation determined by T cell receptor number and tunable thresholds. Science. 1996 Jul 5;273(5271):104–106. doi: 10.1126/science.273.5271.104. [DOI] [PubMed] [Google Scholar]
  71. Wegener A. M., Letourneur F., Hoeveler A., Brocker T., Luton F., Malissen B. The T cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell. 1992 Jan 10;68(1):83–95. doi: 10.1016/0092-8674(92)90208-t. [DOI] [PubMed] [Google Scholar]
  72. Weiss A., Littman D. R. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–274. doi: 10.1016/0092-8674(94)90334-4. [DOI] [PubMed] [Google Scholar]
  73. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  74. Wiest D. L., Ashe J. M., Abe R., Bolen J. B., Singer A. TCR activation of ZAP70 is impaired in CD4+CD8+ thymocytes as a consequence of intrathymic interactions that diminish available p56lck. Immunity. 1996 May;4(5):495–504. doi: 10.1016/s1074-7613(00)80415-x. [DOI] [PubMed] [Google Scholar]
  75. Wu M., Fan J., Gunning W., Ratnam M. Clustering of GPI-anchored folate receptor independent of both cross-linking and association with caveolin. J Membr Biol. 1997 Sep 15;159(2):137–147. doi: 10.1007/s002329900277. [DOI] [PubMed] [Google Scholar]
  76. Xavier R., Brennan T., Li Q., McCormack C., Seed B. Membrane compartmentation is required for efficient T cell activation. Immunity. 1998 Jun;8(6):723–732. doi: 10.1016/s1074-7613(00)80577-4. [DOI] [PubMed] [Google Scholar]
  77. Zhang W., Sloan-Lancaster J., Kitchen J., Trible R. P., Samelson L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell. 1998 Jan 9;92(1):83–92. doi: 10.1016/s0092-8674(00)80901-0. [DOI] [PubMed] [Google Scholar]
  78. van Oers N. S., Killeen N., Weiss A. Lck regulates the tyrosine phosphorylation of the T cell receptor subunits and ZAP-70 in murine thymocytes. J Exp Med. 1996 Mar 1;183(3):1053–1062. doi: 10.1084/jem.183.3.1053. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. van Oers N. S., Killeen N., Weiss A. ZAP-70 is constitutively associated with tyrosine-phosphorylated TCR zeta in murine thymocytes and lymph node T cells. Immunity. 1994 Nov;1(8):675–685. doi: 10.1016/1074-7613(94)90038-8. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES