Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 1991 Apr;50(4):214–218. doi: 10.1136/ard.50.4.214

Synovial fluid pyrophosphate and nucleoside triphosphate pyrophosphatase: comparison between normal and diseased and between inflamed and non-inflamed joints.

M Pattrick 1, E Hamilton 1, J Hornby 1, M Doherty 1
PMCID: PMC1004389  PMID: 1851409

Abstract

Deposition of intra-articular calcium pyrophosphate is associated with both aging and arthropathy; increased concentrations of free pyrophosphate (PPi) may contribute to such deposition. Free pyrophosphate and nucleoside triphosphate pyrophosphatase (NTPase) were estimated in synovial fluids from 50 subjects with normal knees and from 44 patients with rheumatoid arthritis, 61 with pyrophosphate arthropathy, and 59 with osteoarthritis. For arthropathic knees clinically assessed inflammation was classified as active or inactive using a summated score of six clinical features. The order of PPi (mumol/l) and NTPase (mumol PPi/30 min/mg protein) was pyrophosphate arthropathy greater than osteoarthritis greater than rheumatoid arthritis (median PPi, NTPase respectively: for pyrophosphate arthropathy 15.9, 0.45; for osteoarthritis 9.3, 0.25; for rheumatoid arthritis 4.4, 0.18), with significant differences between all groups. In pyrophosphate arthropathy both PPi (mumol/l) and NTPase (mumol PPi/30 min/mg protein) were higher than normal (15.9, 0.45 v 8.6, 0.2 respectively), but findings in osteoarthritis did not differ from normal. The inflammatory state of the knee had a distinct but variable effect on synovial fluid findings in rheumatoid arthritis and pyrophosphate arthropathy, but not in osteoarthritis. There was no correlation of either PPi or NTPase with age, or between PPi and NTPase in any group. This study provides in vivo data for synovial fluid PPi and NTPase. It suggests that factors other than PPi need to be considered in a study of crystal associated arthropathy. Clinical inflammation, as well as diagnosis, is important in synovial fluid studies.

Full text

PDF
217

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cartier P. H., Thuillier L. Measurement of inorganic pyrophosphate in biological fluids and bone tissues. Anal Biochem. 1974 Oct;61(2):416–428. doi: 10.1016/0003-2697(74)90407-2. [DOI] [PubMed] [Google Scholar]
  2. Caswell A. M., Russell R. G. Identification of ecto-nucleoside triphosphate pyrophosphatase in human articular chondrocytes in monolayer culture. Biochim Biophys Acta. 1985 Oct 30;847(1):40–47. doi: 10.1016/0167-4889(85)90150-8. [DOI] [PubMed] [Google Scholar]
  3. Cheng P. T., Pritzker K. P. Inhibition of calcium pyrophosphate dihydrate crystal formation: effects of carboxylate ions. Calcif Tissue Int. 1988 Jan;42(1):46–52. doi: 10.1007/BF02555838. [DOI] [PubMed] [Google Scholar]
  4. Cheung C. P., Suhadolnik R. J. Analysis of inorganic pyrophosphate at the picomole level. Anal Biochem. 1977 Nov;83(1):61–63. doi: 10.1016/0003-2697(77)90510-3. [DOI] [PubMed] [Google Scholar]
  5. Chuck A. J., Pattrick M. G., Hamilton E., Wilson R., Doherty M. Crystal deposition in hypophosphatasia: a reappraisal. Ann Rheum Dis. 1989 Jul;48(7):571–576. doi: 10.1136/ard.48.7.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Doherty M., Dieppe P. Crystal deposition disease in the elderly. Clin Rheum Dis. 1986 Apr;12(1):97–116. [PubMed] [Google Scholar]
  7. Doherty M., Dieppe P., Watt I. Low incidence of calcium pyrophosphate dihydrate crystal deposition in rheumatoid arthritis, with modification of radiographic features in coexistent disease. Arthritis Rheum. 1984 Sep;27(9):1002–1009. doi: 10.1002/art.1780270906. [DOI] [PubMed] [Google Scholar]
  8. Doherty M., Richards N., Hornby J., Powell R. Relation between synovial fluid C3 degradation products and local joint inflammation in rheumatoid arthritis, osteoarthritis, and crystal associated arthropathy. Ann Rheum Dis. 1988 Mar;47(3):190–197. doi: 10.1136/ard.47.3.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Flodgaard H. Isotope derivative method for determination of microquantities of inorganic pyrophosphate in biological material. Eur J Biochem. 1970 Aug;15(2):273–279. doi: 10.1111/j.1432-1033.1970.tb01004.x. [DOI] [PubMed] [Google Scholar]
  10. Howell D. S., Martel-Pelletier J., Pelletier J. P., Morales S., Muniz O. NTP pyrophosphohydrolase in human chondrocalcinotic and osteoarthritic cartilage. II. Further studies on histologic and subcellular distribution. Arthritis Rheum. 1984 Feb;27(2):193–199. doi: 10.1002/art.1780270211. [DOI] [PubMed] [Google Scholar]
  11. Howell D. S., Muniz O., Pita J. C., Enis J. E. Extrusion of pyrophosphate into extracellular media by osteoarthritic cartilage incubates. J Clin Invest. 1975 Dec;56(6):1473–1480. doi: 10.1172/JCI108228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jacobelli S., Kettlun A. M., Sapag-Hagar M. Inorganic pyrophosphatase activity of the synovial fluid. Kinetic and clinical study. Arthritis Rheum. 1978 May;21(4):447–452. doi: 10.1002/art.1780210408. [DOI] [PubMed] [Google Scholar]
  13. Johnson J. C., Shanoff M., Bass S. T., Boezi J. A., Hansen R. G. An enzymic method for determination of inorganic pyrophosphate and its use as an assay for RNA polymerase. Anal Biochem. 1968 Oct 10;26(1):137–145. doi: 10.1016/0003-2697(68)90037-7. [DOI] [PubMed] [Google Scholar]
  14. Khym J. X. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchangers. Clin Chem. 1975 Aug;21(9):1245–1252. [PubMed] [Google Scholar]
  15. Lust G., Seegmiller J. E. A rapid, enzymatic assay for measurement of inorganic pyrophosphate in biological samples. Clin Chim Acta. 1976 Jan 16;66(2):241–249. doi: 10.1016/0009-8981(76)90061-9. [DOI] [PubMed] [Google Scholar]
  16. McGuire M. B., Colman C. H., Baghat N., Russell R. G. Radiometric measurement of pyrophosphate in cell cultures. Biochem Soc Trans. 1980 Oct;8(5):529–530. doi: 10.1042/bst0080529. [DOI] [PubMed] [Google Scholar]
  17. Micheli A., Po J., Fallet G. H. Measurement of soluble pyrophosphate in plasma and synovial fluid of patients with various rheumatic diseases. Scand J Rheumatol. 1981;10(3):237–240. doi: 10.3109/03009748109095305. [DOI] [PubMed] [Google Scholar]
  18. Muniz O., Pelletier J. P., Martel-Pelletier J., Morales S., Howell D. S. NTP pyrophosphohydrolase in human chondrocalcinotic and osteoarthritic cartilage. I. Some biochemical characteristics. Arthritis Rheum. 1984 Feb;27(2):186–192. doi: 10.1002/art.1780270210. [DOI] [PubMed] [Google Scholar]
  19. Ohira T., Ishikawa K., Masuda I., Yokoyama M., Honda I. Histologic localization of lipid in the articular tissues in calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum. 1988 Aug;31(8):1057–1062. doi: 10.1002/art.1780310819. [DOI] [PubMed] [Google Scholar]
  20. Pflug M., McCarty D. J., Kawahara F. Basal urinary pyrophosphate excretion in pseudogout. Arthritis Rheum. 1969 Jun;12(3):228–231. doi: 10.1002/art.1780120310. [DOI] [PubMed] [Google Scholar]
  21. Rachow J. W., Ryan L. M. Partial characterization of synovial fluid nucleotide pyrophosphohydrolase. Arthritis Rheum. 1985 Dec;28(12):1377–1383. doi: 10.1002/art.1780281210. [DOI] [PubMed] [Google Scholar]
  22. Russell R. G., Bisaz S., Fleisch H., Currey H. L., Rubinstein H. M., Dietz A. A., Boussina I., Micheli A., Fallet G. Inorganic pyrophosphate in plasma, urine, and synovial fluid of patients with pyrophosphate arthropathy (chondrocalcinosis or pseudogout). Lancet. 1970 Oct 31;2(7679):899–902. doi: 10.1016/s0140-6736(70)92070-2. [DOI] [PubMed] [Google Scholar]
  23. Russell R. G. Metabolism of inorganic pyrophosphate (PPi). Arthritis Rheum. 1976 May-Jun;19 (Suppl 3):465–478. doi: 10.1002/1529-0131(197605/06)19:3+<465::aid-art1780190722>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  24. Ryan L. M., Cheung H. S., McCarty D. J. Release of pyrophosphate by normal mammalian articular hyaline and fibrocartilage in organ culture. Arthritis Rheum. 1981 Dec;24(12):1522–1527. doi: 10.1002/art.1780241211. [DOI] [PubMed] [Google Scholar]
  25. SUGINO Y., MIYOSHI Y. THE SPECIFIC PRECIPITATION OF ORTHOPHOSPHATE AND SOME BIOCHEMICAL APPLICATIONS. J Biol Chem. 1964 Jul;239:2360–2364. [PubMed] [Google Scholar]
  26. Silcox D. C., McCarty D. J., Jr Elevated inorganic pyrophosphate concentrations in synovial fluids in osteoarthritis and pseudogout. J Lab Clin Med. 1974 Apr;83(4):518–531. [PubMed] [Google Scholar]
  27. Silcox D. C., McCarty D. J. Measurement of inorganic pyrophosphate in biological fluids. Elevated levels in some patients with osteoarthritis, pseudogout, acromegaly, and uremia. J Clin Invest. 1973 Aug;52(8):1863–1870. doi: 10.1172/JCI107369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tenenbaum J., Muniz O., Schumacher H. R., Good A. E., Howell D. S. Comparison of phosphohydrolase activities from articular cartilage in calcium pyrophosphate deposition disease and primary osteoarthritis. Arthritis Rheum. 1981 Mar;24(3):492–500. doi: 10.1002/art.1780240307. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES